Основы логики: построение логических схем. Построение функциональных логических схем по заданным функциям Построение логических схем по логическому выражению

Разделы: Информатика

Цели:

1. Образовательные

  • Основные логические операции.
  • Построение таблиц истинности сложных высказываний.
  • Логические схемы и логические выражения.

2. Развивающие

  • Развитие исследовательской и познавательной деятельности.
  • Лаконично, полно и содержательно отвечать и делать обобщающие выводы.

3. Воспитательные

  • Формирование аккуратности при работе с компьютером.
  • Понимание связей между другими учащимися, культурой поведения.

Тип урока: комбинированный

Методы организации учебной деятельности:

  • фронтальная
  • индивидуальная
  • ученик-компьютер

Программно-дидактическое обеспечение: ПК, презентация, задание для практической работы, раздаточный материал, Electronics Workbench (EWB512), PowerPoint.

ХОД УРОКА

I. Организационный момент.

II. Актуализация ранее изученного материала и проверка домашнего задания.

Задания для выполнения в тетради и у доски.

№1. Составьте таблицы истинности для следующих логических выражений:

№3. Нарисовать на доске логические элементы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ.

III. Новый материал.

Над возможностями применения логики в технике ученые и инженеры задумывались уже давно. Например, голландский физик Пауль Эренфест (1880 - 1933), еще в 1910 году писал: "...Пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить:

1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции;
2) не содержит ли она излишних усложнений.

Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое "или-или", воплощенное в эбоните и латуни; все вместе - система чисто качественных... "посылок", ничего не оставляющая желать в отношении сложности и запутанности... правда ли, что, несмотря на существование алгебры логики, своего рода "алгебра распределительных схем" должна считаться утопией?".

Созданная позднее М.А. Гавриловым (1903 - 1979) теория релейно-контактных схем показала, что это вовсе не утопия.

Посмотрим на микросхему. На первый взгляд ничего того, что нас бы удивило, мы не видим!
Но если рассматривать ее при сильном увеличении, она поразит нас своей стройной архитектурой. Чтобы понять, как она работает, вспомним, что компьютер работает на электричестве, то есть любая информация представлена в компьютере в виде электрических импульсов.

Почему необходимо уметь строить логические схемы?

Дело в том, что из вентилей составляют более сложные схемы, которые позволяют выполнять арифметические операции и хранить информацию. Причем схему, выполняющую определенные функции, можно построить из различных по сочетанию и количеству вентилей. Поэтому значение формального представления логической схемы чрезвычайно велико. Оно необходимо для того, чтобы разработчик имел возможность выбрать наиболее подходящий ему вариант построения схемы из вентилей. Процесс разработки общей логической схемы устройства (в том числе и компьютера в целом), становится иерархическим, причем на каждом следующем уровне в качестве "кирпичиков" используются логические схемы, созданные на предыдущем этапе.
Алгебра логики дала в руки конструкторам мощное средство разработки, анализа и совершенствования логических схем. В самом деле, гораздо проще, быстрее и дешевле изучать свойства и доказывать правильность работы схемы с помощью выражающей ее формулы, чем создавать реальное техническое устройство. Именно в этом состоит смысл любого математического моделирования.

Логические схемы необходимо строить из минимально возможного количества элементов, что в свою очередь, обеспечивает большую скорость работы и увеличивает надежность устройства.

Правило построения логических схем:

1) Определить число логических переменных.
2) Определить количество базовых логических операций и их порядок.
3) Изобразить для каждой логической операции соответствующий ей вентиль и соединить вентили в порядке выполнения логических операций.

Рассмотрение двух примеров перехода от выражения к схеме. (Презентация)

Рассмотрение двух примеров перехода от схемы к выражению. (Презентация)

Чаще в жизни возникает ситуация, когда известен результат и для его реализации необходимо построить устройство.

Рассмотрим следующую задачу: (Презентация)

Задача 1. В двухэтажном доме лестница освещается одной лампой Х. На первом этаже установлен один выключатель А, на втором этаже - выключатель В. Если включают А, то лампа загорается. При поднятии на второй этаж и включении В лампа гаснет. Если кто-то выходит и нажмет В, то лампа включается, при спуске на первый этаж и нажатии А лампа должна погаснуть.

Алгоритм решения:

  • Составить таблицу истинности.
  • Определить логическую функцию.
  • Построить логическую схему.
A B X
0 0 0
1 0 1
1 1 0
0 1 1
0 0 0

Чтобы создать логическую функцию по таблице истинности, надо записывать значения выходной переменной.

Между строками таблицы будет стоять знак логического сложения, а между столбцами - знак логического умножения .

IV. Закрепление изученного материала.

Работа у доски и в тетради по карточкам.

№1. По логическому выражению построить логическую схему:

№2. По логической схеме составьте логическое выражение:

V. Компьютерный практикум.

Практическая работа с использованием электронной лаборатории Electronics Workbench (EWB512).

Вариант 1

1. Упростите логическое выражение

2. Проверьте свою работу, используя программу Electronics Workbench:

Запишите исходное выражение в Logic Converter;
- Составьте таблицу истинности
- Упростите выражение используя
- Постройте упрощенную логическую схему .

3. Проверьте правильность выполненных упрощений.

VI. Домашнее задание:

а) упростите логическое выражение, постройте логическую схему и таблицу истинности
б) по таблице истинности (00001011) составьте выражение, упростите его, нарисуйте схему.

Удобным способом представления логических выражений являются логические схемы. Вот как изображаются на таких схемах три основные логические операции:

Рис 6.1 - Схематическое изображение логических операций

Пример. Для вычисления логического выражения: 1 или 0 и 1 нарисовать схему, от­ра­жающую последовательность выполнения логических операций. По схеме вычислить зна­чение логического выражения.

Здесь наглядно отражено то, что первой выполняется операцияи , затемили . Теперь в порядке слева – направо припишем к выходящим стрелкам результаты операций:

В результате получилась1 , т.е. «ИСТИНА».

Пример. Дано выражение:не (1 и (0 или 1) и 1).

Вычислить значение выражения с помощью логической схемы.

Решение. Логическая схема с результатами вычислений выглядит так:

Импликация и эквивалентность

Импликация (условное высказывание). В русском языке этой логической операции соответствуют союзы если..., то; когда..., тогда; коль скоро..., то и т. п.

Выражение, начинающееся после союзовесли, когда, коль скоро, называется основанием условного высказывания.

Выражение, стоящее после словто, тогда, называется следствием. В логических формулах операция импликации обозначается знаком «→». Импликация - двухместная операция; записывается так: А→В .

Эквивалентность. Языковой аналог - союзы если и только если; тогда и только тогда, когда... Эквивалентность обозначаетсязнаком «≡» или «↔».

Порядоквсех пяти логических операций по убыванию старшинства следующий: отрица­ние, конъюнкция, дизъюнкция, импликация, эквивалентность.

Преобразование логических выражений

Формула имеет нормальную форму, если в ней отсутствуют знаки эквивалентности, импликации, двойного отрицания, при этом знаки отрицания находятся только при переменных.

Основные формулы преобразования логических выражений:

2. (А & В) ≡ А В.

3. (А В) ≡ А & В.

4. (А → В) ≡А & В.

5. А→B ≡ A B.

6. А В ≡ (А & В) (А & В) ≡ (А В) & (А B).

7. А & (А B) ≡ А.

8. А А & В ≡ А.

9. А & (А В) ≡ А & В.

10. A А & В ≡ А В.

11. Законы коммутативности:

А & В ≡ В & А;

А В ≡ В А.

12. Законы ассоциативности:

(A B) С ≡ А С);

(А & В) & С ≡ А & (В & С).

13. Законы идемпотентности:

А А ≡ А;

14. Законы дистрибутивности:

А & (В С) ≡ (А & В) (А & С);

А (В & С) ≡ (А В) & (А С).

15. А 1 ≡ 1;

16. А & 1 ≡ А;

17. А А ≡ 1;

18. А & 0 ≡ 0;

19. А & А ≡ 0.

6.3. Задание на лабораторную работу

Задания распределяются в зависимости от выданного преподавателем mn -кода. Если m - число нечетное, то ваш вариант 1, если четное - вариант 2.

Задание 1. Используя логические операции, запишите высказывания, которые являются истинными при выполнении следующих условий:

Вариант 1.

1) хотя бы одно из чисел X, Y, Z положительно;

2) только одно из чисел X, Y, Z не является положительным.

3) только одно из чисел X, Y, Z больше 10

4) ни одно из чисел X, Y, Z не равно 104

Вариант 2.

1) хотя бы одно из чисел X, Y, Z отрицательно;

2) только одно из чисел X, Y, Z является отрицательным.

3) только одно из чисел X, Y, Z не больше 10

4) каждое из чисел X, Y, Z равно 0

Задание 2. Определите значение логического выражения не (X>Z) ине (X=Y), если:

Вариант 1.

1) X=3, Y=5, Z=2;

2) X=5, Y=0, Z=–8.

Вариант 2.

1) X=9, Y=–9, Z=9;

2) X=0, Y=1, Z=19.

Задание 3. Пусть a, b, c - логические величины, которые имеют следующие значения: а = истина , b= ложь , c = истина . Нарисуйте логические схемы для следующих логических выражений и вычислите их значения:

Вариант 1.

1) а и b;

2) не а или b;

3) а или b и с;

4) (а или b) и (c или b).

Вариант 2.

1) а или b;

2) а и b или с;

3) не а или b и с;

4) не и b и с).

Задание 4. Построить логические схемы по логическому выражению:

Вариант 1. x 1 и (не x 2 или x 3).

Вариант 2. x 1 и x 2 или не x 1 и x 3 .

Задание 5. Выполните вычисления по логическим схемам. Запишите соответствующие логические выражения:

Вариант 1. Вариант 2.

Задание 6. Дана логическая схема. Построить логическое выражение, соответствующее этой схеме.

Вычислить значение выражения для:

Вариант 1.

1) x 1 =0, x 2 =1;

2) x 1 =1, x 2 =1.

Вариант 2.

1) x 1 =1, x 2 =0;

2) x 1 =0, x 2 =0.

Задание 7. Дана логическая схема. Построить таблицу истинности для данной схемы.

Задание 8. Определить истинность формулы:

Вариант 1. ((a ) .

Вариант 2. .

Задание 9. Упростите выражение:

Вариант 1. .

Вариант 2. .

6.4. Требования к содержанию отчета

1. Цель лабораторной работы.

2. Задание на лабораторную работу. Mn – код.

3. Результаты решения заданий своего варианта.

4. Выводы по полученным результатам.

6.5. Контрольные вопросы

1. Что такое логическое высказывание, константа, переменная, формула?

2. Какие виды логических операций рассматриваются в лабораторной работе?

3. Таблицы истинности для импликации и эквивалентности?

4. Перечислите законы алгебры логики?


Лабораторная работа №7
"СИСТЕМЫ СЧИСЛЕНИЯ"

7.1. Цель работы

Изучение систем счисления. Приобретение навыков перевода из одной системы счи­с­ления в другую

7.2. Методические указания

Развернутой формой записи числа называется запись в виде:

A q =±(a n-1 q n-1 + a n-2 q n-2 +…+ a 0 q 0 + a –1 q -1 + a -2 q -2 + …+ а -m q -m).

Здесь А q - само число, q - основание системы счисления, а i - цифры данной системы счи­сления, n - число разрядов целой части числа, m - число разрядов дробной части чис­ла.

Пример. Получить развернутую форму десятичных чисел 32478; 26,387.

32478 10 = 3*10000 + 2*1000 + 4*100 + 7*10 + 8 = 3*10 4 + 2*10 3 + 4*10 2 + 7*10 1 + 8*10 0 .

26,387 10 = 2*10 1 + 6*10 0 + 3*10 -1 + 8*10 -2 + 7*10 -3 .

Пример. Получить развернутую форму чисел 112 3 , 101101 2 , 15FC 16 , 101,11 2

112 3 =1*10 2 + 1*10 1 + 2*10 0 .

1011012 = 1*10 101 + 0*10 100 + 1*10 11 + 1*10 10 + 0*10 1 + 1*10 0 .

15FC 16 = 1*10 3 + 5 *10 2 + F*10 1 + С.

101,11 2 = 1*10 10 + 0*10 1 + 1*10 0 + 1*10 -1 + 1*10 -10 .

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то по­лу­чится число в десятичной системе, равное данному. По этому принципу производится пе­ревод из недесятичной системы в десятичную.

Пример. Все числа из предыдущего примера перевести в десятичную систему.

112 3 =1*3 2 + 1*3 1 + 2*3 0 = 9+3+2 = 14 10 .

101101 2 = 1*2 5 + 0*2 4 + 1*2 3 + 1*2 2 + 0*2 1 + 1*2 0 =32+8+4+1 = 45 10 ,

15FC 16 = 1*16 3 + 5*16 2 + 15*16 1 + 12 = 4096 + 1280 + 240 + 12 = 5628 10 .

101,11 2 = 1*2 2 + 0*2 1 + 1*2 0 + 1*2 –1 + 12 -2 = 4 + 1 + 1/2 + 1/4 = 5 + 0,5 + 0,25 = 5,75 10 .

Лабораторная работа № 2. Алгебра логики

Цель работы

Изучить основы алгебры логики.

Задачи лабораторной работы

В результате прохождения занятия студент должен:

    • определения основных понятий (простое и сложное высказывания, логические операции, логические выражения, логическая функция);
    • порядок выполнения логических операций;
    • алгоритм построения таблиц истинности;
    • схемы базовых логических элементов;
    • законы логики и правила преобразования логических выражений;
    • применять загоны логики для упрощения логических выражений;
    • строить таблицы истинности;
    • строить логические схемы сложных выражений.

Общие теоретические сведения

Основные понятия алгебры логики

Логической основой компьютера является алгебра логики, которая рассматривает логические операции над высказываниями.

Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Пример. «3 – простое число» является высказыванием, поскольку оно истинно.

Не всякое предложение является логическим высказыванием.

Пример. предложение «Давайте пойдем в кино» не является высказыванием. Вопросительные и побудительные предложения высказываниями не являются.

Высказывательная форма – это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Пример. «x+2>5» - высказывательная форма, которая при x>3 является истинной, иначе ложной.

Алгебра логики рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным. Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками .

Высказывания, образованные из других высказываний с помощью логических связок, называются составными (сложными). Высказывания, которые не являются составными, называются элементарными (простыми).

Пример. высказывание «Число 6 делится на 2» - простое высказывание. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - составное высказывание, образованное из двух простых с помощью логической связки «и».

Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят.

Чтобы обращаться к логическим высказываниям, им назначают имена.

Пример. Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая связка, А, В – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0».

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1).

Таблица 1. Основные логические операции


НЕ
Операция, выражаемая словом «не», называется отрицанием и обозначается чертой над высказыванием (или знаком). Высказывание А истинно, когда A ложно, и ложно, когда A истинно.

Пример. Пусть А=«Сегодня пасмурно», тогда А=«Сегодня не пасмурно».

И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « » (может также обозначаться знаками или &). Высказывание А В истинно тогда и только тогда, когда оба высказывания А и В истинны.

Пример. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - истинно, а высказывание «Число 6 делится на 2, и число 6 больше 10» - ложно.

ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком

(или плюсом). Высказывание А В ложно тогда и только тогда, когда оба высказывания А и В ложны.

Пример: Высказывание «Число 6 делится на 2 или число 6 больше 10» - истинно, а высказывание «Число 6 делится на 5 или число 6 больше 10» - ложно.

ЕСЛИ … ТО Операция, выражаемая связками «если …, то», «из … следует», «... влечет …», называется импликацией (лат. implico – тесно связаны) и обозначается знаком → . Высказывание А→В ложно тогда и только тогда, когда А истинно, а В ложно.

Пример. Высказывание «если студент сдал все экзамены на «отлично», то он получит стипендию». Очевидно, эту импликацию следует признать ложной лишь в том случае, когда студент сдал на «отлично» все экзамены, но стипендии не получил. В остальных случаях, когда не все экзамены сданы на «отлично» и стипендия получена (например, в силу того, что студент проживает в малообеспеченной семье) либо когда экзамены вообще не сданы и о стипендии не может быть и речи, импликацию можно признать истинной.

РАВНОСИЛЬНО Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «... равносильно …», называется эквиваленцией или двойной импликацией и обозначается знаком ↔ или ~ . Высказывание А↔В истинно тогда и только тогда, когда значения А и В совпадают.

Пример: Высказывание «Число является четным тогда и только тогда, когда оно делится без остатка на 2» является истинным, а высказывание «Число является нечетным тогда и только тогда, когда оно делится без остатка на 2» - ложно.

ЛИБО … ЛИБО Операция, выражаемая связками «Либо … либо», называется исключающее ИЛИ или сложением по модулю 2 и обозначается XOR или . Высказывание А В истинно тогда и только тогда, когда значения А и В не совпадают.

Пример. Высказывание «Число 6 либо нечетно либо делится без остатка на 2» является истинным, а высказывание «Либо число 6 четно либо число 6 делится на 3» – ложно, так как истинны оба высказывания входящие в него.

Замечание. Импликацию можно выразить через дизъюнкцию и отрицание:

Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:

Исключающее ИЛИ можно выразить через отрицание, дизъюнкцию и конъюнкцию:

Вывод. Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания («не»), затем конъюнкция («и»), после конъюнкции – дизъюнкция («или») и исключающего или и в последнюю очередь – импликация и эквиваленция.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Логическая формула - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).

Логическая функция - это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1.

Пример . – логическая функция двух переменных A и B.

Значения логической функции для разных сочетаний значений входных переменных – или, как это иначе называют, наборов входных переменных – обычно задаются специальной таблицей. Такая таблица называется таблицей истинности .

Приведем таблицу истинности основных логических операций (табл. 2)

Таблица 2

A B

Опираясь на данные таблицы истинности основных логических операций можно составлять таблицы истинности для более сложных формул.

Алгоритм построения таблиц истинности для сложных выражений:

  • количество строк = 2 n + строка для заголовка,
  • n - количество простых высказываний.
  • количество столбцов = количество переменных + количество логических операций;
  • определить количество переменных (простых выражений);
  • определить количество логических операций и последовательность их выполнения.

Пример 1. Составить таблицу истинности для формулы И–НЕ, которую можно записать так: .

1. Определить количество строк:

На входе два простых высказывания: А и В, поэтому n=2 и количество строк =2 2 +1=5.

2. Определить количество столбцов:

Выражение состоит из двух простых выражений (A и B) и двух логических операций (1 инверсия, 1 конъюнкция), т.е. количество столбцов таблицы истинности = 4.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 3).

Таблица 3. Таблица истинности для логической операции


Примечание: И–НЕ
называют также «штрих Шеффера» (обозначают |) или «антиконъюнкция» ; ИЛИ–НЕ называют также «стрелка Пирса» (обозначают ↓) или «антидизъюнкция» .


Пример 2.
Составить таблицу истинности логического выражения .


Решение:

1. Определить количество строк:

На входе два простых высказывания: А и В, поэтому n=2 и количество строк=2 2 +1= 5.

2. Определить количество столбцов:

Выражение состоит из двух простых выражений (A и B) и пяти логических операций (2 инверсии, 2 конъюнкции, 1 дизъюнкция), т.е. количество столбцов таблицы истинности = 7.

Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.

3. Заполнить столбцы с учетом таблиц истинности логических операций (табл. 5).

Таблица 5. Таблица истинности для логической операции
Поскольку любая логическая операция может быть представлена в виде комбинации трех основных, любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из “кирпичиков”.

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс – логический смысл сигнала – 1, нет импульса – 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции.

Преобразование сигнала логическим элементом задается таблицей состояний, которая фактически является таблицей истинности, соответствующей логической функции, только представлена в форме логических схем. В такой форме удобно изображать цепочки логических операций и производить их вычисления.

Алгоритм построения логических схем.

  1. Определить число логических переменных.
  2. Определить количество логических операций и их порядок.
  3. Изобразить для каждой логической операции соответствующий ей логический элемент.
  4. Соединить логические элементы в порядке выполнения логических операций.

Пример. По заданной логической функции построить логическую схему.

Решение.

  1. Число логических переменных = 2 (A и B).
  2. Количество операций = 5 (2 инверсии, 2 конъюнкции, 1 дизъюнкция). Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.
  3. Схема будет содержать 2 инвертора, 2 конъюнктора и 1 дизъюнктор.
  4. Построение надо начинать с логической операции, которая должна выполняться последней. В данном случае такой операцией является логическое сложение, следовательно, на выходе должен быть дизъюнктор. На него сигналы подаются с двух конъюнкторов, на которые, в свою очередь, подаются один входной сигнал нормальный и один инвертированный (с инверторов).


Похожая информация.


Почему необходимо уметь строить логические схемы?

Дело в том, что из вентилей составляют более сложные схемы, которые позволяют выполнить арифметические операции и хранить информацию. Причем схему, выполняющую определенные функции, можно построить из различных по сочетанию и количеству вентилей. Поэтому значение формального представления логической схемы чрезвычайно велико. Оно необходимо для того, чтобы разработчик имел возможность выбрать наиболее подходящий ему вариант построения схемы из вентилей. Процесс разработки общей логической схемы устройства (в том числе и компьютера в целом) таким образом становится иерархическим, причем на каждом следующем уровне в качестве «кирпичиков» используются логические схемы, созданные на предыдущем этапе.

Алгебра логики дала в руки конструкторам мощное средство разработки, анализа и совершенствования логических схем. В самом деле, гораздо проще, быстрее и дешевле изучать свойства и доказывать правильность работы схемы с помощью выражающей ее формулы, чем создавать реальное техническое устройство. Именно в этом состоит смысл любого математического моделирования.

Логические схемы необходимо строить из минимально возможного количества элементов, что в свою очередь, обеспечивает большую скорость работы и увеличивает надежность устройства.

Алгоритм построения логических схем :

1) Определить число логических переменных.

2) Определить количество базовых логических операций и их порядок.

3) Изобразить для каждой логической операции соответствующий ей вентиль.

4) Соединить вентили в порядке выполнения логических операций.

Пример 10

Составить логическую схему для логического выражения: F =¬ X v Y & X .

1) Две переменные – X и Y .

2) Две логические операции: 1 3 2

¬ X v Y & X .

3) Строим схему, соединяя вентили в порядке выполнения логических операций:

Пример 11

Постройте логическую схему, соответствующую логическому выражению F = X & Y v¬ (Y v X ).

Вычислить значения выражения для X =1, Y =0.

1) Переменных две: X и Y .

2) Логических операций четыре: конъюнкция, две дизъюнкции и отрицание. Определяем порядок выполнения операций:

1 4 3 2

X & Y v ¬ (Y v X ).

3) Схему строим слева направо в соответствии с порядком выполнения логических операций:


4) Вычислим значение выражения: F =1&0 v¬ (0 v 1)=0.

Упражнение 15

Постройте логическую схему, соответствующую логическому выражению, и найдите значение логического выражения:

1) F=A v B& ¬ C, если A=1, B=1, C=1 .

2) F = ¬ (A v B&C), если A=0, B=1, C=1 .

Цели урока:

Образовательные:

  • закрепить у учащихся представление об устройствах элементной базы компьютера;
  • закрепить навыки построения логических схем.

Развивающие:

  • формировать развитие алгоритмического мышления;
  • развить конструкторские умения;
  • продолжать способствовать развитию ИКТ - компетентности;

Воспитательные:

  • продолжить формирование познавательного интереса к предмету информатика;
  • воспитывать личностные качества:
  • активность,
  • самостоятельность,
  • аккуратность в работе;

Требования к знаниям и умениям:

Учащиеся должны знать:

  • основные базовые элементы логических схем;
  • правила составления логических схем.

Учащиеся должны уметь:

  • составлять логические схемы.

Тип урока: урок закрепления изученного материала

Вид урока: комбинированный

Методы организации учебной деятельности:

  • фронтальная;
  • индивидуальная;

Программно-дидактическое обеспечение:

  • ПК, SMART Board, карточки с индивидуальным домашним заданием.

Урок разработан с помощью программы Macromedia Flash .

Ход урока

I. Постановка целей урока.

Добрый день!

Сегодня мы продолжаем изучение темы "Построение логических схем".

Приготовьте раздаточный материал "Логические основы ЭВМ. Построение логических схем" Приложение 1

Вопрос учителя. Назовите основные логические элементы. Какой логический элемент соответствует логической операции И, ИЛИ, НЕ?

Ответ учащихся. Логический элемент компьютера - это часть электронной логической схемы, которая реализует элементарную логическую функцию. Основные логические элементы конъюнктор (соответствует логическому умножению), дизъюнктор (соответствует логическому сложению), инвертор (соответствует логическому отрицанию).

Вопрос учителя. По каким правилам логические элементы преобразуют входные сигналы. Рассмотрим элемент И. В каком случае на выходе будет ток (сигнал равный 1).

Ответ учащихся. На первом входе есть ток (1, истина), на втором есть (1, истина), на выходе ток идет (1, истина).

Вопрос учителя. На первом входе есть ток, на втором нет, однако на выходе ток идет. На входах тока нет и на выходе нет. Какую логическую операцию реализует данный элемент?

Ответ учащихся. Элемент ИЛИ - дизъюнктор.

Вопрос учителя. Рассмотрим логический элемент НЕ. В каком случае на выходе не будет тока (сигнал равный 0)?

Ответ учащихся. На входе есть ток, сигнал равен 1.

Вопрос учителя. В чем отличие логической схемы от логического элемента?

Ответ учащихся. Логические схемы состоят из логических элементов, осуществляющих логические операции.

Проанализируем схему и определим сигнал на выходе.

II. Закрепление изученного материала.

Почему необходимо уметь строить логические схемы?

Дело в том, что из вентилей составляют более сложные схемы, которые позволяют выполнять арифметические операции и хранить информацию. Причем схему, выполняющую определенные функции, можно построить из различных по сочетанию и количеству вентилей. Поэтому значение формального представления логической схемы чрезвычайно велико. Оно необходимо для того, чтобы разработчик имел возможность выбрать наиболее подходящий ему вариант построения схемы из вентилей. Процесс разработки общей логической схемы устройства (в том числе и компьютера в целом), становится иерархическим, причем на каждом следующем уровне в качестве "кирпичиков" используются логические схемы, созданные на предыдущем этапе.

Дома вам необходимо было построить логические схемы, соответствующие логическим выражениям.

Вопрос учителя. Каков алгоритм построение логических схем?

Ответ учащихся. Алгоритм построение логических схем:

Определить число логических переменных.

Определить количество базовых логических операций и их порядок.

Изобразить для каждой логической операции соответствующий ей элемент (вентиль).

Соединить вентили в порядке выполнения логических операций.

Проверка домашнего задания Приложение 1 . Домашнее задание. Часть 1

Построить логическую схему для логического выражения:

Построить логическую схему для логического выражения:

Построить логическую схему для логического выражения:

Построить логическую схему для логического выражения:

Построить логическую схему для логического выражения:

Алгебра логики дала конструкторам мощное средство разработки, анализа и совершенствования логических схем. Проще, и быстрее изучать свойства и доказывать правильность работы схемы с помощью выражающей её формулы, чем создавать реальное техническое устройство.

Таким образом, цель нашего следующего урока - изучить законы алгебры логики.

IV. Домашнее задание. Часть 2

V. Практическая работа.

Программа - тренажер "Построение логических схем"

www.Kpolyakov.narod.ru Программа "Logic",