Устройство компьютера. Из чего состоит компьютер. Устройство компьютера — что находиться внутри системного блока? Где что находится в компьютере

Что такое компьютер . Компьютер, как следует из его названия (на английском слово computer произошло от слова compute – считать, вычислять) – это вычислительное устройство . На самом деле, кроме как считать, считать много и быстро компьютер ничего более и не умеет. Различные периферийный устройства вывода, такие как монитор, принтер, аудио аппаратура, веб-камера и т.п. просто способны по-разному результаты этих вычислений преобразовывать в понятные нам сигналы. Различные устройства ввода (клавиатура, манипуляторы, планшеты и т.д.) занимаются обратной задачей: преобразованием внешних воздействий в понятные компьютеру наборы команд и данных. То, без чего компьютер просто не может существовать – это центральный процессор и запоминающее устройство (память компьютера). Первое умеет считать, а второе – хранить исходные данные и результаты вычислений. Компьютер производит вычисления по заранее заложенной в него программе. Программы пишут люди, а дело компьютера – их выполнять. Об этом чуть более подробно в конце материала, а сейчас вкратце о том, в каком виде компьютер воспринимает информацию.

Часть 1. Особенности представления информации в компьютере

Минимальной единицей информации для компьютера является один бит , который может принимать два значения. Одно из значений считают равным 1, а другое 0. На уровне “железа” (аппаратной части компьютера) единица информации представлена триггерами – классом электронных устройств, которые обладают возможностью длительно оставаться в одном из двух состояний. Значение выходного напряжения таких электронных устройств может иметь два значения, одно из которых ассоциируют с нулем, а другое с единицей. Если бы на базе полупроводников можно было легко и эффективно создавать электронные устройства, способные подолгу находиться, например, в трех или четырех состояниях, то и битом тогда считали бы единицу информации, принимающую три и более разных значений. Поскольку все же современные компьютеры построены на базе триггеров, то и система счисления в них используется двоичная.

Что такое система счисления . Система счисления – это способ представления числовой информации, определяемый набором символов. Для нас привычной является десятичная система счисления, представленная набором цифр от 0 до 9. Компьютеру для представления информации достаточно двух символов: 0 и 1. Почему это так - я попытался ответить чуть выше, когда описывал природу триггеров – аппаратной основы современных компьютеров. Как представляются числа в различных системах счисления, я покажу на примере десятичной, двоичной и шестнадцатеричной систем. Последняя широко используется в низкоуровневом программировании, поскольку более компактна, чем двоичная, а числа, представленные в 16-ричной легко перевести в 2-ю и наоборот.

Десятичная система счисления “СИ10”: {0,1,2,3,4,5,6,7,8,9}. Двоичная система счисления “СИ2”: {0,1} Шестнадцатеричная система счисления “СИ16”: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} (для обозначения чисел 10, 11, 12, 13, 14 и 15 используются символы A, B, C, D, E и F)

Итак, пример: рассмотрим, как представляется число 100 с использованием этих систем.

“СИ10”: 100=1*100 +0*10+0*1 “СИ2” : 01100100=0*128+1*64 +1*32 +0*16+0*8+1*4 +0*2+0*1 “СИ16”: 64=6*16+4*1

Все это различные позиционные системы счисления с разным основанием . Позиционными системами счисления называют те системы, в которых вклад в общую сумму от каждого разряда определяется не только значением этого разряда, но и его позицией. Примером не позиционной системы счисления является римская система с ее L,X,V,I. Получаем, что значение числа, которое обозначается в позиционной системе счисления с определенным основанием, вычисляется следующим образом:

N=D 0 *B 0 +D 1 *B 1 +…+D n-1 *B n-1 +D n *B n , где D i – величина разряда на i-м месте, начиная с 0, а B – основание системы счисления. Не забываем, что B 0 =1.

Как перевести число из шестнадцатеричной системы в двоичную и наоборот . Все просто, каждый разряд в 16-ричной системы переводите в 4 разряда двоичной системы и записывайте результат последовательно хоть слева направо, хоть справа налево. Наоборот: разбиваете двоичное число на тетрады (по 4 разряда строго справа налево) и каждую тетраду отдельно заменяете на один из символов 16-ричной системы счисления. Если последняя тетрада оказалась неполной, до дополняете ее нулями слева. Пример:

1010111100110 -> 0001(1).0101(5).1110(14).0110(6) -> 15E6

Для того, чтобы быстро умножить или разделить число на основание системы счисления, достаточно просто сдвинуть все разряды влево (умножение) и вправо (деление). Умножение на 2 в двоичной системе счисления называют сдвигом влево (в конце добавляется 0), а целочисленное деление на 2 – сдвигом вправо (последний символ убирается). Пример:

11011(27) > 1101(13)

Единицы информации компьютера . С минимальной единицей информации в вычислительной технике разобрались – это бит. Но минимальным адресуемым набором информации является не бит, а байт – набор информации, представленный 8-ю битами и, как следствие, способный хранить 256 (2 8) различных значений. Что значит минимальный адресуемый набор информации ? Это значит, что вся память компьютера поделена на участки, каждый из которых имеет свой адрес (порядковый номер). Минимальный размер такого участка – байт. Я, конечно, упрощаю картину, но на данный момент такого представления достаточно. Почему именно 8 бит? Так сложилось исторически, а впервые 8-ми битовая (байтовая) адресация была применена в вычислительных машинах компании IBM. Наверное, сочли удобным, что единицу информации легко представить ровно двумя символами шестнадцатеричной системы счисления. А теперь развеем мифы насчет объемов данных, обозначаемых практически всем знакомыми словами килобайт , мегабайт , гигабайт , терабайт и т.д.

1 килобайт (кб) = 2 10 байт = 1024, а не 1000 байт. 1 мегабайт (мб) = 2 20 байт = 1048576 байт = 1024 килобайт, а не 1000.000 байт. 1 гигабайт (гб) = 2 30 байт, 1 терабайт (тб) = 2 40 байт и т.д.

Часть 2. Устройство компьютера

Как устроен компьютер . Или из чего состоит компьютер . Дальнейшее повествование будет построено следующим образом. Описание устройства компьютера будет представлено на различных уровнях. На первом уровне я обозначу основные составляющие современного компьютера, на втором и последующих уровнях буду более детально описывать каждую его часть. Для быстрого поиска нужной вам информации пользуйтесь следующей навигацией.

Уровень 1. Общее устройство компьютера

Системный блок

Системный блок компьютера – это тот самый ящик, из которого торчит шнур питания, к которому подключены монитор, клавиатура, мышь и принтер, и в который вставляют компакт диски, флешки и прочие внешние устройства. Можно сказать, что все устройства, которые подключены к системному блоку извне являются периферийными устройствами – выполняющими второстепенные задачи компьютера. Ну а в самом системном блоке находится все самое ценное и необходимое: блок питания, системная материнская плата и центральное процессорное устройство (центральный процессор) - “мозги” компьютера. А также, модули управления периферийными устройствами (контроллеры), видео и звуковая карты, сетевая карта и модем, транспортные магистрали для передачи информации (шины) и много еще чего полезного. Тем не менее, все это в первую очередь справедливо для домашних и офисных компьютеров. Например, глядя на ноутбук, сложно сказать, где у него заканчивается системный блок, и начинаются периферийные устройства. Все это деление условно, тем более что есть еще и коммуникаторы, планшетные компьютеры и прочие портативные вычислительные устройства.

К этой категории относят все устройства, которые позволяют вводить информацию в компьютер. Например, клавиатура, мышь, джойстик, веб камера и сенсорный экран позволяют это делать человеку, а устройство чтения компакт-дисков или карты памяти просто считывает информацию с внешнего носителя автоматически. К устройствам ввода чаще относят только средства ввода информации человеком, а все остальные называют приводами внешних носителей данных .

Это устройства, которые предназначены для вывода результатов вычислений компьютера. Монитор выводит информацию в графическом электронном виде, принтер делает практически то же самое, но на бумаге, а аудио система воспроизводит информацию в виде звуков. Все это средства обратной связи с человеком в ответ на ввод им информации через устройства ввода.

Прочие устройства

К этой категории можно отнести любые подключаемые к компьютеру устройства от флеш карт и портативных жестких дисков, до модемов (в том числе wi-fi), роутеров и т.п. Классифицировать устройства – дело неблагодарное, поскольку делать это можно абсолютно по-разному, и всегда можешь оказаться прав. Например, встроенный модем сложно отнести к периферийным устройствам, хотя внешний модем выполняет абсолютно те же функции. Модем – это устройство для организации связи между компьютерами, и абсолютно не важно, где он находится. То же самое можно сказать про сетевую карту. Жесткий диск – это, прежде всего, энергонезависимое запоминающее устройство, которое может быть как внутренним, так и внешним. Приведенная выше классификация оборудования компьютера опирается в первую очередь на физическое месторасположения того или иного устройства в классическом персональном компьютере и только потом на его назначение. Это всего лишь один из способов классификации и не более того.

Уровень 2. Начинка системного блока современного компьютера

Для начала пару слов о быстродействии компьютера . Это свойство характеризуется тактовой частотой и производительностью системы. Чем они выше – тем быстрее работает компьютер, но это не синонимы. Производительность любого компонента системы – это количество выполняемых им элементарных операций в секунду. Тактовая частота – это частота синхронизирующих импульсов, подаваемых на вход системы генератором тактовых импульсов, что, в свою очередь, и определяет количество выполняемых последовательно операций за единицу времени. Но производительность можно увеличить, обеспечив возможность выполнять элементарные операции параллельно при той же тактовой частоте, примером чего является многоядерная архитектура центрального процессора. Таким образом, нужно оценивать не только тактовую частоту, с которой работает процессор, но и его архитектуру.

Теперь о компонентах компьютера. С корпусом и блоком питания, я думаю, все понятно и без комментариев. Системная материнская плата и центральный процессор – это сердце компьютера и именно они занимаются управлением процессами вычислений. О них более подробный рассказ чуть ниже. Шины – это средство передачи информации между различными устройствами компьютера. Шины делятся на шины управления , которые передают коды команд; адресные шины , которые, как следует из их названия, служат для передачи адреса определенного контекстом команды набора аргументов или адреса, куда следует поместить результат; и шины данных , которые передают, непосредственно, сами данные - аргументы и результаты выполнения команд. Контроллеры – это микропроцессорные устройства, предназначенные для управления жесткими дисками, приводами внешних носителей информации и прочими видами устройств. Контроллеры – это посредники между инфраструктурой центрального процессора и конкретным устройством, подключенным к компьютеру. Жесткий диск – это энергонезависимое устройство хранения информации. Энергонезависимость запоминающего устройства – это его способность не утрачивать информацию после отключения питания. Помимо пользовательских данных, жесткий диск содержит программный код операционной системы, включая драйверы различных устройств. Драйвер устройства – это программа, управляющая его контроллером. Операционная система, например, Microsoft Windows, управляет всеми устройствами посредством драйверов, которые имеют понятный ей программный интерфейс. Драйверы, как правило, разрабатываются поставщиками комплектующих компьютера отдельно для каждого вида операционной системы. Также, системный блок не может обойтись без системы охлаждения и панели управления, позволяющей включать и выключать компьютер.

Уровень 3. Как работает компьютер

Как в компьютере представлены данные . Все данные для компьютера – это набор чисел. Как хранятся положительные целые числа , я рассказал в самом начале. Данные, которые могут быть как положительными, так и отрицательными, в первом разряде (в 1-м бите) хранят знак (0-плюс, 1-минус). Про особенности хранения вещественных чисел рассказывать подробно не буду, но следует знать, что вещественные числа в компьютере представляются с помощью мантиссы и экспоненты . Мантисса - это правильная дробь (числитель меньше знаменателя), у которой первый знак после запятой больше нуля (в двоичной системе это означает, что после запятой первый разряд - 1). Значение вещественных чисел вычисляется по формуле D=m*2 q , где m – мантисса, а q -экспонента, равная log 2 (D/m). В памяти компьютер хранит не саму мантиссу, а ее значащую часть - знаки после запятой. Чем больше разрядов (битов) выделено под мантиссу, тем выше точность представления вещественных данных. Пример:

Число ПИ в десятичной системе счисления выглядит примерно так: ПИ=3,1415926535... Приведем число к виду правильной дроби, умноженной на 10 в соответствующей степени: ПИ=3,1415926535 = 0.31415926535*10 1 =m*10 q , где m=0.31415926535, q=1.

Таким образом, мы представили вещественное число в виде двух целых чисел, поскольку для хранения мантиссы достаточно хранить только знаки после запятой (31415926535). Нужно учитывать, что и мантисса и экспонента могут быть как положительными, так и отрицательными числами. Если число отрицательное, то и мантисса отрицательная. Если число меньше одной десятой, то экспонента отрицательная (в десятичной системе счисления). В двоичной системе счисления экспонента отрицательная, если число меньше 0.5. Теперь попробуем проделать то же самое в двоичной системе счисления.

Немного округлим исходное число: ПИ 10 =3.1415=3+0.1415 Итак, 3 в двоичной системе это 11. Теперь разберемся с дробной частью. 0.1415=0 *0.5+0 *0.25+1 *0.125+…= 0 *2 -1 +0 *2 -2 +1 *2 -3 +… В итоге получим примерно следующее: ПИ 2 =11,001001000011=0.11001001000011*2 2 =m*2 q , где m=0.11001001000011, а q=2.

Теперь должно стать понятным, что я имел в виду под точностью представления вещественных чисел. На мантиссу потрачено 14 разрядов, а для числа ПИ удалось сохранить только лишь несколько знаков после запятой (в десятичной системе счисления). Также, работая на компьютере, можно столкнуться со следующей формой записи числа:

6,6725E-11 Это не что иное, как 6,6725*10 -11 Текст – это последовательность символов, а каждый символ имеет свой числовой код. Кодировок текста существует несколько. Наиболее известные и широко применяемые кодировки текста – это ASCII и UNICODE. Графика – это последовательность точек, каждая из которых соответствует определенному цвету. Каждый цвет представлен 3-мя целыми числами: составляющей красного (red), зеленого (green) и синего (blue) цветов RGB палитры. Чем больше разрядов отводится под хранение цвета, тем большим спектром цветов вы можете оперировать. Видео – это просто последовательность статических кадров. Существуют технологии сжатия видео, которые, к примеру, отдельные участки видео хранят как один кадр и последовательность дельт – отличий последующих кадров от предыдущего. При условии, что соседние кадры отличаются не абсолютно всеми точками (например, мультипликация), такой подход позволяет сэкономить на общих объемах материала. Звук – это сигнал, который из аналогового представления можно перевести в цифровое путем дискретизации и квантования (оцифровки). Естественно, что оцифровка приведет к потере качества, но такова цена цифрового звучания.

Как организован процесс вычислений . Материнская плата – это печатная плата, на которой установлен центральный процессор (ЦП ). Также, через специальные разъемы к материнской плате подключены модули оперативной памяти, видеокарта, звуковая карта и прочие устройства. Материнская плата – это агрегирующее звено в архитектуре современного компьютера. Материнская плата снабжена системным контроллером (северный мост ), обеспечивающим связь центрального процессора с оперативной памятью и графическим контроллером, а также, периферийным контроллером (южный мост ), отвечающим за связь с контроллерами периферийных устройств и постоянным запоминающим устройством. Северный и Южный мост вместе образуют чипсет материнской платы - ее базовый набор микросхем. Оперативная память или оперативное запоминающее устройство (ОЗУ ) – это энергозависимая память компьютера, в которой хранятся исполняемый и сами данные программы. Объем оперативной памяти влияет на производительность компьютера, поскольку именно ОЗУ определяет объем обрабатываемой в каждый момент времени информации. Постоянное запоминающее устройство (ПЗУ ) – это энергоне зависимая память компьютера, которая хранит самую важную для него информацию, в том числе программу первоначальной загрузки компьютера (до загрузки операционной системы) – BIOS (basic input/output system - базовая система ввода-вывода). Данные ПЗУ обычно записывает производитель материнской платы. Видеокарта – это самостоятельная плата со своим процессором и своей оперативной памятью (видеопамять), предназначенная для быстрого преобразования графической информации в тот вид, который можно напрямую вывести на экран. Процессор видеокарты оптимизирован для работы с графикой, в том числе, для обработки трехмерной графики. Тем самым, процессор видеокарты разгружает центральный процессор от такого вида работ. Чем выше объем видеопамяти, тем быстрее и чаще компьютер способен обновлять данные на экране, и тем шире может быть спектр используемых цветов. Центральное процессорное устройство (ЦПУ) может состоять из нескольких процессоров, каждый из которых способен параллельно остальным выполнять свою программу. Раньше процессор и ядро процессора были синонимами. Сейчас ЦПУ может состоять из нескольких процессоров, а каждый процессор из нескольких ядер. Ядро микропроцессора – это арифметико-логическое устройство (АЛУ ), контроллер ядра и набор системных регистров . АЛУ, как следует из его названия, умеет выполнять с числами, загруженными в регистры . Набор регистров служит для хранения адреса текущей команды (команды хранятся в оперативной памяти, а регистр IP (Instruction Pointer) указывает на текущую команду), адресов загружаемых для выполнения команды данных и самих данных, включая результат выполнения команды. Ядро, собственно, и управляет всем этим процессом, выполняя низкоуровневые команды процессора. К таким командам относятся загрузка данных в регистры, выполнение арифметических операций, сравнение значений двух регистров, переход к следующей команде и т.д. Сам микропроцессор обменивается данными с оперативной памятью посредством контроллера оперативной памяти. Хотя время доступа к оперативной памяти намного меньше, чем, к примеру, время доступа к информации на жестком диске, но при интенсивных вычислениях всех же это время становится заметным. Для организации хранения данных, время доступа к которым должно быть минимальным, служит сверхоперативная память (кэш память).


Кто или что управляет процессом вычислений . Процессом вычислений, как я уже сказал в начале, управляет компьютерная программа. Программы пишутся на различных языках программирования и чаще всего на . Основными высокого уровня являются: объявление переменных различных типов, выполнение арифметических и логических операций, условные операторы и циклы. Человеку, программирующему на языке высокого уровня не нужно задумываться, как обрабатываемая им информация представляется в компьютере. Все вычисления, в основном, описываются в привычной для него десятичной системе счисления. Программист определяет в том виде, в котором ему удобно. В его распоряжении серьезный арсенал уже готовых программных компонентов, решений и технологий программирования: , средства организации , сервисы работы с и т.д. и т.п. Далее, специальные программы, называемые компиляторами, переводят текст программы в машинный код – на язык команд, понятный центральному процессору компьютера. Как выглядит программа на языке программирования высокого уровня можно, к примеру, посмотреть на страницах этого сайта, а как выглядит программа на языке низкого уровня, приближенного к машинному коду (), смотрите ниже (эта программа всего лишь выводит сообщение “Hello, world”).

386 .model flat, stdcall option casemap:none include \masm32\include\windows.inc include \masm32\include\kernel32.inc includelib \masm32\lib\kernel32.lib .data msg db "Hello, world", 13, 10 len equ $-msg .data? written dd ? .code start: push -11 call GetStdHandle push 0 push OFFSET written push len push OFFSET msg push eax call WriteFile push 0 call ExitProcess end start

Один оператор на языке высокого уровня трансформируется в десятки, а то и сотни строк машинного кода, но поскольку это происходит автоматически, то переживать по этому поводу не стоит. В момент запуска программы, операционная система выделяет ей отдельный , загружает машинный код в оперативную память, инициализирует регистры (в регистр IP помещает адрес самой первой инструкции), и вычислительный процесс начинается.

Считаю, что в рамках этого материала рассказ о том, как устроен современный компьютер, можно закончить. Теперь вы знаете в общих чертах, из чего он состоит и как работает, а детали без труда найдете в интернете.

Как устроен компьютер

Компьютеры давно и прочно вошли в нашу жизнь. Сложно представить — что было бы, если бы они вдруг исчезли!

Мы часто автоматическим движением нажимаем на кнопку включения, ждем минуту-другую, пока компьютер загружается.

И потом начинаем делать на нем какую-то работу, постукивая по клавиатуре.

И не задумываемся, что при этом происходит в его недрах.

Про то, как работают компьютерные устройства можно написать (и написано уже) сотни статей.

Мы постараемся в данной статье посмотреть под практическим углом зрения на то, как устроено это чудо техники.

Существует большое число видов компьютеров - настольные, портативные (ноутбуки, нетбуки и иже с ними), мэйнфрэймы (суперкомпьютеры в шкафах, вроде тех, которые используют для предсказания погоды) и другие. Мы рассмотрим начинку настольного компьютера, который называют еще персональным (ПК).

Как устроен настольный компьютер

Основная часть настольного (desktop) компьютера - это системный блок.

Это тот «сундук», в который вставляется множество проводов, в том числе и кабель питающего напряжения 220 В.

Результаты нашей работы отображаются на мониторе.

Информация вводится в компьютер с помощью клавиатуры и манипулятора «мышь».

И монитор, и клавиатура, и мышь подключаются к соответствующим разъемам системного блока.

Снимем боковую крышку системного блока и заглянем внутрь.

В верхней части видим

Блок питания

В производительных компьютерах, имеющих мощные процессоры, графические видеокарты и дополнительные устройства на борту, применяются БП повышенной мощности. В серверах (еще более мощных компьютерах, имеющих несколько процессоров и управляющих локальными вычислительными сетями) могут применяться БП мощностью 1 кВт и больше.

Вначале сетевое напряжение выпрямляется и превращается с помощью фильтра в постоянное. Затем инвертор превращает его в переменное с частотой в несколько десятков килогерц. Это переменное напряжение понижается импульсным трансформатором с несколькими обмотками. Затем оно выпрямляется и фильтруется, превращаясь в несколько нужных нам постоянных.

Ввиду того, что преобразование выполняется на относительно высокой частоте (а не на частоте сети 50 Гц) размеры трансформатора (и всего БП) при достаточно большой мощности получаются небольшими. БП содержит в себе один или два вентилятора, охлаждающих его компоненты и заодно пространство системного блока.

При этом воздух втягивается через щели, протягивается через системный блок и выбрасывается вентилятором наружу. В воздухе всегда есть пыль, которая постепенно скапливается внутри компьютера, особенно в радиаторе процессора и самом БП. Она ухудшает теплоотдачу, поэтому ее надо периодически (хотя бы раз в год) удалять.

Отметим, что в БП могут применяться вентиляторы разных диаметров - от 80 до 130 мм. Вентилятор большего диаметра при одной и той же производительности имеет меньшие обороты и поэтому меньше шумит.

Разъемы блока питания

Выходные напряжения БП выводятся на разъемы разноцветными проводниками:

  • +5 В - проводниками красного цвета ,
  • +12 В - проводниками желтого цвета,
  • +3,3 В - проводниками оранжевого цвета ,
  • общие - проводниками черного цвета.

БП имеет несколько разъемов, основной из них - 24 контактный, который вставляется в материнскую плату. В старых блоках питания использовался 20 контактный разъем. Другие разъемы, с меньшим числом контактов, используются для подачи напряжений на винчестер, привод DVD и видеокарту (если требуется). Заканчивая краткий рассказ о БП, отметим, что он снабжен схемами защиты от перегрузки и короткого замыкания.

Материнская плата

Если мы переведем взгляд ниже, увидим , основную часть компьютера.

Материнская плата представляет собой кусок изоляционного материала с токопроводящими дорожками и напаянными деталями и разъемами. В эти разъемы могут вставляться:

  • процессор ,
  • модули памяти,
  • платы расширения ,
  • разъем блока питания,
  • провода дополнительных разъемов, индикации и кнопок ,
  • 3 В литиевая батарейка.

Разъем для процессора

Больше всего контактов в разъеме для процессора. Современные процессоры имеют более тысячи контактов. Процессоры могут иметь выводы (или pins, пины) или контактные площадки («пятачки»). Разъем для процессоров сконструирован так, что обеспечивается плотный и надежный контакт между ними и ответной частью — «сокетом» (socket), установленным на плате.

Иногда (к счастью, достаточно редко) контакт ослабевает. В этом случае компьютер может не стартовать. И может сложиться ложное впечатление, что неисправна материнская плата или процессор. Повторная установка процессора в разъем решает эту проблему. В один разъем может устанавливаться несколько типов процессоров, но только одной фирмы.

В бытовых и офисных компьютерах почти всегда используются процессоры фирм «AMD» и «INTEL». Процессоры фирмы AMD нельзя установить в разъем для процессоров INTEL и наоборот. Разъем и процессор содержат ключи, поэтому процессор можно вставить только одним определенным - правильным образом.

Охлаждение процессора

Современные процессоры могут потреблять от БП мощность 100 Вт и более. Это большая величина, поэтому на процессор устанавливают Cooler (охладитель), состоящий из металлического радиатора и вентилятора. Радиаторы могут быть только из алюминиевого сплава или из алюминиевого сплава с медной вставкой.

Медь проводит тепло лучше алюминия, поэтому вставку впрессовывают в центр радиатора, в месте контакта с металлической крышкой процессора. Между процессором и радиатором наносится тонкий слой теплопроводящей смазки, улучшающей тепловой контакт. Иногда может применяться жидкостная система охлаждения.

Она устанавливается в том случае, если невозможно установить достаточно громоздкий охладитель непосредственно на процессор из-за недостатка места. В этом случае тепло отводится жидкостью по трубкам к охладителю, установленному в удобном месте.

Вентилятор управляется схемой управления, расположенной на материнской плате. Если температура процессора в процессе работы увеличивается, схема управления отслеживает это и увеличивает обороты вентилятора. Отметим, что для охлаждения процессоров используются более качественные вентиляторы, с бОльшим ресурсом работы, чем в БП.

Модули памяти

Следующая группа разъемов используется для установки модулей . Разъемы содержат защелки, а модули - выступ на коротких сторонах, что позволяет надежно фиксировать модуль в разъеме. Кроме того, на нижней стороне модуля (там, где контакты) есть еще один ключ в виде выреза. Это исключает установку модулей не подходящих к данной плате типов.

На плате могут устанавливаться один или несколько модулей. В настоящее время емкость модулей памяти исчисляется гигабайтами (Gb). Современный модуль DDR3 имеет 240 контактов.

Контакты расположены по обеим сторонам модуля, поэтому такие модули называются DIMM (Dual In-line Memory Module, двухсторонний модуль памяти). Контакт в разъеме достаточно надежен, но иногда он может ослабевать, и компьютер при включении не подает «признаков жизни» или издает длинные гудки.

Повторная установка модулей решает эту проблему. Переставить модуль памяти легче, чем процессор, ведь для этого не надо наносить теплопроводящую пасту.

Переставлять модуль памяти и процессор нужно только тогда, когда компьютер выключен , и шнур питания вынут из розетки .

В статьи мы продолжим краткое знакомство с устройством компьютера.

Описание внутреннего устройства компьютера (для начинающих).

Домашний или офисный компьютер (в обывательском понимании - компьютер обыкновенный) состоит из системного блока и периферийных устройств (монитор, клавиатура, мышка, сканер, принтер и пр.).

Как выглядят монитор, принтер и клавиатура с мышкой, описывать не буду, а сразу перейду к описанию внутренностей основного компонента компьютера - системного блока.

Снимаем боковую крышку системного блока и видим следующую картину:

Фото внутреннего устройства компьютера

Основные компоненты системного блока:

1. Корпус - весьма важная часть компьютера. Бывают разных размеров и формфакторов. К выбору корпуса системного блока следует подойти внимательно. В принципе, чем корпус больше и тяжелее, тем лучше - будет легче обеспечить хорошее охлаждение и низкий уровень шума. Покупайте корпуса только известных брэндов, например: InWin, Thermaltake, Chieftec, Asus и др.

2. Блок питания - один из самых важных компонентов системного блока компьютера. Вы можете сэкономить на чем угодно, но только не на блоке питания. Как ни странно, но качество блока питания косвенно можно определить на вес - чем тяжелее, тем лучше. Возьмите в одну руку дешевый безымянный блок питания, а в другую дорогой брэндовый, и вы все поймете.Качественные радиаторы и трансформаторы достаточно тяжелые. Блок питания обеспечивает питание всех компонентов системного блока, и качество этого питания оказывает существенное влияние на здоровье всех комплектующих. Некачественный блок питания может являться причиной нестабильной работы компьютера и даже причиной выгорания дорогостоящих комплектующих. Брэндовые корпуса обычнокомплектуются достаточно качественными блоками питания. При выборе блока питания также необходимо обращать внимание на его мощность, например для офисного компьютера достаточно будет 300 Вт, а для игрового может и 500 Вт не хватить.

3. Микропроцессор (CPU - центральный процессор) с охлаждающим радиатором и вентилятором. Микропроцессор - это главное вычислительное устройство компьютера, именно он выполняет команды, из последовательности которых состоят программы. От быстродействия процессора во многом зависит производительность компьютера. Быстродействие процессора определяется частотой, на которой он работает, количеством ядер и архитектурой. Сейчас на рынке присутствуют два основных брэнда: Intel и AMD. Выбор процессора определяется задачами, для решения которых покупается компьютер. Топовые модели обычно нужны для игр, видеообработки и подобных задач. (сайт)

4. Корпусной вентилятор . Необходим для создания циркуляции воздуха внутри системного блока: обычно работает на выдув, удаляя теплый воздух из корпуса компьютера и вызывая приток холодного воздуха из вне.

5. Модули оперативной памяти . Оперативная память (ОЗУ - оперативное запоминающее устройство, RAM) - это быстродействующая память компьютера. Именно с этой памятью напрямую работает процессор. После выключения компьютера хранимая в ней информация стирается. С учетом прожорливости современных программ правило такое: чем больше оперативной памяти, тем лучше. На данный момент оптимальным объемом оперативной памяти, пожалуй, будет 4-8 Гигабайт.

6. Видеокарта (видеоадаптер, видеоплата, videocard, videoadapter) - занимается обработкой и выводом графической информации на монитор. В видеокарте имеется свой специализированный графический процессор, который занимается обработкой 2D/3D графической информации. Это позволяет снизить вычислительную нагрузку на центральный процессор (CPU). Для офисных приложений подойдет практически любая видеокарта (даже встроенная в материнскую плату), а вот для игрушек придется раскошелиться. Выбирать игровую видекарту, думаю, следует предварительно определившись с набором игр, в которые хотелось бы поиграть. Выбирая топовую видеокарту убедитесь, что мощности вашего блока питания будет достаточно.

7. Модем . (Наверно в Москве уже неактуальное устройство)

8. Сетевая карта . Через сетевую карту компьютер подключается к локальной или глобальной сети (Интернет). В настоящее время сетевые платы как правило интегрируются в материнские платы.

9, 10. CD или DVD накопитель (CD/DVD-ROM). Бывают как пишушие, так и не пишущие. Могут отличаться скоростью чтения и записи.

11. Жесткий диск (накопитель на жестких магнитных дисках, harddisk, HDD) - это устройство долговременной памяти, данные при выключении питания не стираются, скорость работы намного ниже, чем у оперативной памяти, а емкость намного выше. Все ваши установленные программы, документы, музыка и фильмы храняться именно на жестком диске. Его емкость измеряется в Гигабайтах - чем больше, тем лучше, хотя для большинства офисных применений достаточно 40-80 Гигабайт.

12. Материнская плата - основной компонент системного блока, т.к. она объединяет все перечисленные устройства, а также содержит дополнительные компоненты: сетевой адаптер, видеокарта, звуковая карта, устройства ввода-вывода и пр.

Заключение:

При выборе комплектующих следует убедиться в их совместимости друг с другом. Не экономьте на корпусе и блоке питания - лучше сэкономить на видеокарте, а потом со временем купить новую. Материнскую плату также лучше покупать "с запасом" , чтобы в дальнейшем произвести апгрэйд процессора, памяти и пр.

Сегодня каждый знаком с компьютером. Даже, если не проводит за ним много времени, то, хотя бы иногда сталкивается.

Если Вы столкнулись с какими-либо проблемами компьютеров или ноутбуков, то можете обращаться к нам, наши опытные мастера помогут Вам.

Поэтому будет не лишним знать устройство системного блока компьютера, хотя бы поверхностно.

Ведь у компьютера (ПК) есть, к примеру:

  • скорость работы
  • производительность
  • хранение информации

и было бы неплохо знать, от чего они зависят и как их улучшить.

Тем более, поскольку на ПК хранится информация очень важно её не потерять. Зная, некоторые правила можно в разы улучшить безопасность хранения данных, ведь никому бы не хотелось потерять годами накопленные домашние видео или фотографии, коллекции фильмов, важных рабочих данных и так далее.

Поэтому рассмотрим устройство системного блока и выясним, за, что отвечает каждый компонент и можно ли его улучшить или обновить.

И так, системный блок (системник, СБ) это железная коробка под столом, в которой находятся основные детали ПК.

Именно благодаря ним, мы видим всё, что появляется на экране монитора. Для того, чтобы попасть в СБ нужно открутить его боковую крышку.

Внутри в нём (в стандартном варианте) вмещается:

  1. Блок питания
  2. Материнская плата
  3. Процессор
  4. Оперативная память
  5. Видеокарта
  6. Жёсткий диск (винчестер)
  7. DVD привод дисков

В общем, это все детали, которые нужны для нормального функционирования ПК. Понятно, что бывают и ещё кое-какие детали внутри (отдельная звуковая карта, дополнительная видеокарта и т.д.), но они не так важны для обычного пользователя, чтобы хорошо разбираться в устройстве системного блока компьютера.

Устройство компьютера. Из чего состоит компьютер?

Давайте рассмотрим каждую деталь в отдельности, для чего она нужна, можно ли её обновить или улучшить, как за ними ухаживать, чтобы продлить им время работы.

Начнём с блока питания (БП). Он находится, обычно слева вверху и представляет собой железную коробку с разноцветными проводами.

Нужен он для преобразования электрического тока из розетки в нужный ток для деталей внутри. Сразу стоит сказать, что покупая, блок питания ни в коем случае нельзя на нём экономить. Именно от него зависит, насколько стабильно будет работать система, и не будут ли происходить поломки, в том числе с потерей данных.

Более подробно про выбор блока питания можно почитать в статье . Для того, чтобы продлить ему время нормальной работоспособности стоит обратить внимание на специальный источник бесперебойного питания (ИБП).

Нужен он для того, чтобы, когда из розетки идёт скачок или нестабильный ток заглушить эти помехи или преобразовать его в нормальный или вообще вырубить ПК.

Сказано это не просто так, очень часто именно по причине некачественного тока в электросети детали ПК выходят из строя.

Плюс она связывает их все и организует совместную работу. Важных характеристик для обычных пользователей она не имеет. Поэтому можно покупать недорогой современный вариант. Конечно, покупка имеет свои нюансы, поэтому более подробную информацию про материнские платы можно увидеть .

Как-то продлить ей работу из вне сложно. Наверное, только, если будет хороший блок питания и бесперебойник, как описано выше.

Процессор (проц, камень). Это так сказать мозги. Он осуществляет различные вычислительные и другие операции.

Для обычной работы за ПК (фильмы, мелкие игры, музыка, социальные сети) подойдёт и самая простая модель процессора. Но, если хотите поиграть в мощные игры, типа ГТА 5 , то нужен производительный экземпляр.

Процессор в силу своей большой мощности и внушительной работы выделяет много тепла, на, что и предусмотрена вышеописанная система охлаждения. То есть он нагревается, а радиатор забирает тепло, а кулер в свою очередь обдувает радиатор. Таким образом, получаем охлаждение проца.

Здесь кроется многим знакомые проблемы - шумит вентилятор, греется процессор, более подробно о них можно почитать по ссылке Очистка компьютера от пыли . Также нормальная и продолжительная работа зависит от качественного блока питания и бесперебойника, плюс чистка от пыли с заменой термопасты.

Именно хорошее знание устройства системного блока компьютера, позволяет избежать проблем с перегревом.

Оперативную память (оперативка) часто путают с постоянной памятью компьютера. Давайте разбираться.

Оперативная память от слова «оперативный», то есть быстрый, скорый. Это значит, что информация хранится недолго. В ПК оперативка нужна для сохранения данных об операциях пока ПК работает. Именно пока он работает, все наши действия, будь-то копирование файлов, просмотр фильмов, игры и другие действия проходят через оперативку.

Чем её больше, тем больше данных она может пропустить. Как только мы выключаем компьютер, все данные из оперативки удаляются.

Сборка системного блока компьютера. Assemble/Build system unit.

То есть делаем вывод - оперативка нужна во время работы ПК, через неё осуществляются все операции выполняемые нами. И она никак не связана с постоянной памятью (жёстким диском), на которой информация запоминается и хранится, после того, как ПК выключен. О ней чуть ниже.

Сзади системного блока, к ней идёт кабель от монитора. Отвечает за вывод изображения на мониторе (не путать с монитором, он нужен для показа изображения, которое уже создала данная карта). Для не требовательных пользователей (фильмы, музыка, мелкие игры, соц. сети) подойдёт и самая простая, даже, встроенная в мат. плату.

Если на ПК нужно запускать мощные современные игры, то и видеокарта должна быть соответственно мощная. Более подробно про их характеристики и советы по выбору при покупке можно посмотреть в статьеКакая лучше видеокарта . Также нужен хороший блок питания, плюс чистка от пыли.

Вот мы в вопросе про устройство системного блока компьютера добрались до детали, которая в отличии от оперативной памяти, хранит информацию постоянно (по крайне мере пока не сломается) - жёсткий диск (винчестер, винт).

Внешне выглядит, как небольшая железная коробочка, к которой идут два провода. Один от блока питания, чтобы дать необходимый ток для работы, а второй от мат. платы для того, чтобы соединить его с остальными устройствами для общей работы.

Он, повторимся, нужен для постоянного запоминания информации. Не переносит ударов, падения, вибрации в виду своего высокотехнологичного устройства и настройки. Важно не допускать никаких падений, сотрясений и так далее. Плюс, как всегда важен хороший блок питания.

DVD привод дисков нужен для считывания или записи данных на магнитные диски. Сейчас надобность в данном устройстве постоянно падает, в виду развития интернета (всё есть там, за чем, что-то записывать на диски) и на порядок более удобной и быстрой флеш память, то есть обычных флешек для записи информации.

Вот из таких деталей состоит системный блок компьютера. В статье приведены ознакомительные данные по этим устройствам. Более подробно читайте о них в приведенных рядом с ними ссылках. Ведь просто ознакомившись с ними, можно решить целый ряд иногда возникающих вопросов, к примеру, почему тормозит ПК, как сделать, чтобы начали работать мощные игры или, как собрать недорогой ПК для фильмов, сёрфинга и социальных сетей.

Подытожив, хотелось бы заметить, что для хорошей продолжительной работы системного блока очень важен выбор блока питания и по возможности приобретения хорошего источника бесперебойного питания (ИБП). Конечно, и все остальные компоненты должны быть не из дешёвых безызвестных производителей, плюс важна сбалансированность.

Если, например, уже решили предпринять действия для покупки или обновления конфигурации, то конечный вариант покажите ещё кому-нибудь, для взгляда со стороны. А так, в общем всё. Мы рассмотрели вопрос - устройство системного блока компьютера. Надеемся, что изложенная информация Вам пригодится и Вы будете более подготовлены в Ваших дальнейших действиях. Спасибо за внимание.

В этом уроке мы заглянем внутрь системного блока и познакомимся со всеми основными внутренними компонентами компьютера.

В третьем уроке мы узнали для чего нужны процессор, оперативная память и жесткий диск. В четвертом уроке мы увидели компьютер снаружи и узнали для чего нужны различные кнопки и разъёмы. Сегодня мы откроем крышку системного блока и познакомимся со всеми внутренними компонентами.

Внутреннее устройство компьютера

Когда говорят о внутреннем устройстве компьютера, обычно имеют в виду те компоненты, которые находятся внутри его корпуса . У настольного компьютера корпус – это системный блок, у ноутбуков и нетбуков – это нижняя из раскрываемых половинок (напомню, что разновидностям компьютерной техники у нас был посвящен ).

Компоненты системного блока

Для начала возьмем не слишком новый, но и не слишком старый системный блок, в котором установлены все основные компоненты. А потом сравним с более недорогим вариантом с меньшим количеством дополнительных комплектующих.

Итак, посмотрим на фотографию системного блока сайта IT-уроки.

Что мы увидим, если снять крышку системного блока компьютера

Первое, что бросается в глаза – много всяких печатных плат, «коробочек» и проводов. Все платы и устройства в отдельном корпусе – это компоненты, выполняющие различные задачи. С помощью проводов компоненты обмениваются информацией и получают электрическое питание.

Разберемся со всеми компонентами по очереди.

1. Системная плата

Все компоненты компьютера связаны между собой одной самой большой печатной платой (которую сразу можно узнать на фотографии по размерам), её называют системной платой или материнской платой (в английском варианте motherboard или mainboard ).

Системная плата (компонент системного блока)

Одни компоненты устанавливаются сразу в разъемы, находящиеся на системной плате, другие компоненты подключаются к ней с помощью специальных проводов в соответствующие разъемы, а устанавливаются в специальные отсеки корпуса.

Более подробно о системной плате можно будет узнать из последующих IT-уроков, но уже на более высоком уровне знаний.

2. Блок питания

Чтобы все компоненты могли выполнять свою задачу, их нужно запитать электрической энергией. Для снабжения этой энергией используется компьютерный блок питания (по-английски power supply unit или PSU ), от которого тянутся провода по всему системному блоку.

Большинство устройств имеют специальный разъем для подключения питания, но некоторые получают электрическую энергию через (которая в этом случае будет посредником между блоком питания и устройством).

3. Центральный процессор

С процессором мы уже знакомились в , напомню, что задача процессора – обрабатывать информацию.

Процессор (англ. central processing unit и CPU ) устанавливается в специальный разъем на системной плате (английское название разъема – «Socket »). Процессорный разъем обычно находится в верхней части системной платы.

После установки процессора в разъем, поверх устанавливают систему охлаждения – кулер (алюминиевый радиатор с вентилятором).

На фотографии мы видим кулер, под которым и находится центральный процессор.

4. Оперативная память

С оперативной памятью мы тоже познакомились в третьем уроке.

Оперативная память (ОЗУ , Random Access Memory , RAM ), как и процессор, устанавливается в специальные разъемы на системной плате.

Оперативная память (компонент системного блока)

Оперативная память выполнена в виде небольшой печатной платы с установленными на неё микросхемами памяти, всю эту конструкцию называют «модулем памяти ». Из-за специфичной формы платы, её называют «планкой».

На фотографии видно, что разъемов четыре, а модуля оперативной памяти два и установлены они в разъемы одного цвета для повышения скорости работы (подробнее о таком режиме в последующих IT-уроках на более «продвинутых» уровнях).

5. Видеокарта

Видеокарта (видеоадаптер, графический адаптер , графическая карта, графическая плата, video card, video adapter, display card, graphics card и т.д.) предназначена для обработки графических объектов, которые выводятся в виде/форме изображения на экране монитора.

На фотографии видно, что в данном случае видеокарта выполнена в виде печатной платы (карты расширения ), вставленной в специальный разъем на системной плате (слот расширения). Так как эта видеокарта сильно греется, то в нижней части можно видеть большую систему охлаждения (да-да, это тоже кулер).

Мы впервые на IT-уроках столкнулись с понятиями «карта расширения» и «слот расширения», поэтому сразу зададим определение, от которого будем отталкиваться в дальнейшем.

Карта расширения – устройство в виде печатной платы с универсальным разъемом для установки на системную плату (например, видеокарта, сетевая карта, звуковая карта).

Карты расширения устанавливаются дополнительно к основным компонентам для того, чтобы расширить возможности компьютера , они могут иметь различное назначение (обработка графики, звука или соединение с компьютерной сетью и т.д.).

Пример карты расширения (более простой видеоадаптер)

Слот расширения — специальный универсальный разъем на системной плате, предназначенный для установки дополнительных устройств компьютера выполненных виде карт расширения.

С новыми определениями разобрались, движемся дальше.

6. Сетевая карта

Сетевая карта (сетевой адаптер, Ethernet-адаптер, network adapter, LAN adapter) предназначена для подключения компьютера к компьютерной сети.

Сетевая карта (компонент системного блока)

В данном случае сетевая карта также выполнена в виде карты расширения (печатной платы), которая устанавливается в разъем на системной плате.

7. Звуковая карта

Звуковая карта (аудиокарта, звуковой адаптер, sound card) обрабатывает звук и выводит его на акустические системы (колонки) или наушники.

Звуковая карта (компонент системного блока)

Как и два предыдущих устройства, звуковая карта – это печатная плата, вставленная в разъем на системной плате. Правда, данный звуковой адаптер не обычный, он состоит из двух печатных плат, но это исключение из правил.

8. Жесткий диск

На жестком диске хранятся все программы и данные компьютера (подробнее об этом в IT-уроке).

Жесткий диск в отличие от предыдущих компонентов, не устанавливается на системную плату, а крепится в специальном отсеке корпуса системного блока (посмотрите на фотографию).

Жесткий диск (он же винчестер)

В такие отсеки можно установить несколько жестких дисков и увеличить объем внутренней памяти компьютера.

Жесткий диск иногда называют аббревиатурой НМЖД (Накопитель на жёстких магнитных дисках), часто говорят «винчестер «, а на английском языке hard disk drive или HDD .

9. Оптический привод

Оптический привод (DVD-привод, optical disc drive или ODD) нужен для чтения и записи DVD и CD дисков. Как и жесткий диск, оптический привод устанавливается в специальный отсек системного блока.

Оптический привод (компонент системного блока)

Этот отсек находится в передней верхней части корпуса, он более широкий, чем для жесткого диска, так как размеры DVD-привода заметно больше.

Компоненты системного блока (вариант 2)

Итак, мы рассмотрели все основные компоненты системного блока. А теперь посмотрим, как может отличаться внутреннее устройство компьютера на примере менее дорогого варианта ПК .

На фотографии видны те же компоненты, но не видно карт расширения (видеокарты, сетевой и звуковой карты). Как же этот компьютер будет работать без этих комплектующих? На самом деле эти компоненты есть, но их не видно на первый взгляд.

Встроенные компоненты

Дело в том, что некоторые компоненты могут быть выполнены не в виде карт расширения, а могут быть встроенными (интегрированными) в системную плату или центральный процессор .

В данном случае, на системной плате установлены дополнительные микросхемы, которые выполняют функции сетевого и звукового адаптера. Видеоадаптер встроен (интегрирован) в главную микросхему системной платы.

На фотографии цифрой 1 отмечен видео адаптер, цифрой 2 – сетевой адаптер, а цифрой 3 – звуковой адаптер.

При этом на системной плате остались слоты расширения (цифра 4) для установки более функциональных компонентов (если встроенные вас, по каким либо причинам, не устраивают).

Компоненты ноутбуков

В принципе, можно было бы сделать отдельный урок по внутреннему устройству ноутбуков и нетбуков. Но, по сути, там находятся те же компоненты, что и в настольном компьютере, только эти компоненты меньшего размера и крепятся по-другому.

Каждая из перечисленных в этом IT-уроке комплектующих выполняет свою задачу, но, наверное, интересно знать, какие компоненты больше всего влияют на скорость работы вашего компьютера?

Так как большую часть вычислений выполняет центральный процессор , то он больше всего и влияет на производительность компьютера.

Оперативная память нужна процессору для того, чтобы подавать данные и программы для выполнения расчетов. Поэтому объем памяти тоже заметно влияет на производительность всего компьютера.

Если компьютер нужен для игр или работы с трехмерной графикой , то большое значение имеет скорость работы видеоадаптера .

Но если компьютер используется для работы в Интернете, а также с текстовыми документами, фотографиями, просмотра фильмов и прослушивания музыки, то можно обойтись и самым медленным (но современным) видеоадаптером, в том числе и встроенным в системную плату или процессор.

Видео-дополнение

В качестве закрепления новой информации очень любопытное видео, в котором простым языком описано назначение компонентов компьютера. К сожалению комментарии на английском, но есть перевод субтитрами (пользуйтесь паузой, чтобы успеть прочитать).


Заключение

Итак, в седьмом IT-уроке мы познакомились с внутренним устройством компьютера и кратко рассмотрели все компоненты системного блока . Для уровня «Новичок» этих знаний вполне достаточно, чтобы осознанно работать в большинстве программ, которые вам могут понадобиться.

В следующем уроке мы узнаем, какие устройства еще можно подключить к компьютеру (внешние устройства), называется он .

Копировать запрещено, но можно делиться ссылками: