Условия проектирования транспортных сетей. Проектирование транспортной сети предприятия на базе SDH. Проектирование транспортной сети SDH

Транспортная сеть (ТС) должна проектироваться с учетом следующих требований:

1) ТС должна обеспечивать кратчайшие связи между жилыми районами и основными пассажирообразующими объектами города;

2) плотность ТС должна быть такой, чтобы обеспечить пеший подход к линии пассажирского транспорта не более 600 - 800 м.

Для оценки запроектированной транспортной сети (ТС) необходимо определить следующие показатели:

Протяженность ТС по оси улиц (L тс, км)- необходимо измерить по карте города проложенную Вами сеть и согласно указанного масштаба перевести ее длину в километры:

L тс = _____________________________________________________

Плотность ТС (бтс. км/км 2):

где F – селитебная площадь города

Плотность равна ________________________________

Затраты времени на поездку "от двери до двери" (Т общ,мин.):

В общем виде эти затраты складываются из следующих слагаемых:

    времени подхода к остановочному пункту транспортной сети

    времени ожидания транспорта

    времени поездки до остановочного пункта назначения

    времени перехода от остановки до места назначения

В нашем примере эти затраты можно определить по формуле, приняв при этом, что первое и четвертое слагаемые равны между собой:

где Vnx - скорость пешего хождения, Vnx = 5 км/час;

d - длина перегона, d = 600 м;

i - интервал движения между поездами, i =5 мин.

Тобщ =_____________________________________________мин

Тобщ не должны превышать 1часа, в противном случае наступает явление «транспортной усталости», которое приводит к резкому снижению производительности труда.

(машин/вагонов),

Р – объем работы транспорта (пасс.км/год),

m - вместимость подвижного состава,

V э - эксплуатационная скорость (км/ч),

h - число часов работы транспорта на линии,

η - коэффициент наполнения подвижного состава

L – коэффициент выпуска подвижного состава на линию,

Расчеты выполняются для автобуса как наиболее распространенного вида городского пассажирского транспорта:

= ____________________________________________________

Рассчитываем также количество подвижного состава в инвентаре (в парке или депо)

=_____________________________________________________

Вывод: для обеспечения удовлетворения потребности населения города в пассажирских перевозках необходимо следующее количество транспортных единиц -

    Расчет и проектирование маршрутной сети

В задании необходимо по транспортной сети проложить маршрутную сеть города (до 10 маршрутов).

Маршруты должны по возможности обеспечивать беспересадочную и прямолинейную связь жилых районов города между собой и с основ­ными промышленными районами города. Запроектированный вариант маршрутной схемы проверяется по основным показателям.

1. Маршрутный коэффициент (М):

где l mc - общая длина маршрутной сети (сумма протяженности всех маршрутов), км.

Предлагаемая схема состоит из маршрутов (табл.3) общей длиной l mc =______ км

Таблица 3

№ маршрута

Протяженность, км

2. Средний интервал движения между поездами i cp , (мин.) по маршрутной сети,

iср =_________________________ мин

Оценка интервала движения производится с учетом следующей классификации (табл.4).

Таблица 4

Таким образом i cp = мин. входит в _________________ интервал.

3. Коэффициент пересадочности (λ),

где A п - количество пассажиров, едущих с пересадкой;

А о - общее количество пассажиров.

При хорошем варианте проектирования маршрутов λ должен быть не более 40%.

Для определения λ необходимо составить таблицу связей (табл.5) между отдельными районами города и основными пассажирообразующими объектами и определить знаком (+) беспересадочные связи, знаком (-) - связи с пересадкой. В нашем случае сумму «-.» делим на сумму «+» и «-.».

Таблица 5

Районы прибытия

Пр. 2

1 жил. район

2 жил. район

3 жил. район

4 жил. район

СФОРМУЛИРУЙТЕ ВЫВОД.

ВОПРОСЫ К ЭКЗАМЕНУ

    Классификация проектов в городском хозяйстве.

    Состав сметной документации на проведение капитального ремонта (реконструкции) объектов городской инфраструктуры.

    Основные участники проектов и их функции.

    Использование понятия «смета» в городском хозяйстве.

    Виды проектов в городском хозяйстве.

    Методические основы оценки стоимости ремонтно-строительных работ.

    Основные виды рисков и их оценка при проектировании.

    Смета доходов и расходов жилищной организации.

    Состав проектной документации для типовых инженерных решений.

    Составление и использование сметы затрат на услуги водоснабжения и водоотведения.

    Основные стадии и этапы проектирования объектов городского обеспечения.

    Составления сметы затрат по содержанию домовладения (ТСЖ).

    Назначение и состав технико-экономического обоснования (ТЭО) проекта.

    Смета затрат как база расчета и планирования финансовых показателей предприятий городского хозяйства.

    Состав и виды проектной документации при градостроительном проектировании.

    Основные способы определения сметной стоимости ремонтно-строительных работ.

    Основные виды и методы оценки ожидаемых эффектов проекта.

    Структура сметы затрат на производство и распределение тепловой энергии.

    Состав проектной документации для уникальных и сложных объектов города.

    Основные статьи сметы расходов бюджетных организаций образования.

    Основные разделы проекта строительства (реконструкции) объекта городского хозяйства.

    Состав сметы затрат на санитарную очистку городских территорий.

    Состав и назначение технико - экономической части проекта.

    Смета доходов и расходов бюджетных организаций. Порядок составления и утверждения.

    Состав и назначение организационно-строительной части проекта.

    Основные статьи сметы расходов и доходов бюджетных организаций здравоохранения.

    Классификация проектов по временному критерию.

    Смета затрат коммунальных предприятий как основа разработки и утверждения тарифов на их услуги.

    Классификация проектов по уровню принятия решений и источникам финансирования.

    Смета доходов и расходов социальных учреждений города.

    Система нормативно-правовой документации, используемая при проектировании в городском хозяйстве.

    Смета затрат и себестоимость перевозки пассажиров городским пассажирским транспортом.

Федеральное агентство связи

Сибирский государственный университет телекоммуникаций и информатики

кафедра МЭС и ОС

Курсовой проект:

«Проектирование оптической мультисервисной транспортной сети»

Выполнил: С

группа М-72

Проверил: И

Новосибирск - 2011

Техническое задание

1 Введение......................................................................................................................................3

2. Выбор мест расположения узлов связи и предполагаемых трасс прокладки ВОЛП.........4

3. Расчет эквивалентных ресурсов транспортной сети..............................................................7

4. Представление вариантов топологий транспортной сети.....................................................9

5. Представление на схемах рассмотренных вариантов топологий.......................................11

6. Итоговые расчеты ресурсов на каждом из участков сети...................................................14

7. Определение требуемых видов мультиплексоров и их количества в каждом из узлов...15

8. Выбор аппаратуры и кабельной продукции.........................................................................15

9. Обоснованный выбор способов защиты...............................................................................21

10. Расчет участков передачи одноканальных и многоканальных оптических сигналов....22

11. Конфигурация мультиплексоров.........................................................................................26

12. Разработка схемы организации связи.................................................................................34

13. Разработка схемы синхронизации транспортной сети......................................................35

14. Разработка схемы управления транспортной сетью..........................................................42

15. Выбор необходимых контрольно-измерительных приборов............................................47

16. Расчет мощности источника электропитания и выбор ЭПУ.............................................50

17. Комплектация оборудования................................................................................................53

18. Схема прохождения цепей по ЛАЦ в п.А...........................................................................54

19.Заключение..............................................................................................................................55

Список литературы......................................................................................................................56

Приложение А..............................................................................................................................57

Приложение Б..............................................................................................................................59

1 Введение

Одним из основных направлений современного научно-технического прогресса является всестороннее развитие волоконно-оптических систем связи, обеспечивающих возможность доставки на большие расстояния чрезвычайно большого объема информации с наивысшей скоростью. Уже сейчас имеются волоконно-оптические линии (ВОЛП) большой информационной емкости с длиной регенерационных участков до 200 км и более. В настоящее время волоконно-оптические кабели и системы передачи для них выпускаются многими странами мира, в том числе и Россией. Стремительное развитие волоконно-оптических цифровых систем передачи синхронной цифровой иерархии (ВОСП-SDH) привело к появлению новых сетевых технологий: оптических транспортных сетей, и гибридных, а иногда и полностью оптических, сетей доступа.

Благодаря улучшению технологии оптического волокна (OВ), позволившей на порядок расширить его рабочую полосу пропускания, стало возможным развитие систем спектрального уплотнения каналов (WDM), цель которых - увеличение ширины полосы канала связи для пользователя.

Цель данного курсового проекта - разработать транспортную оптическую сеть согласно техническому заданию на основе применения системы SDH.

2 Выбор мест расположения узлов связи и предполагаемых трасс прокладки ВОЛП

Карта проектирования, данная по техническому заданию расположена на рисунке 1. Выберем два наиболее рациональных и оптимальных варианта прокладки кабеля. (рисунок 2), основываясь на следующие принципы:

Минимальные капитальные затраты на строительство;

Минимальные эксплуатационные расходы;

Удобство обслуживания.

Трасса прокладки кабеля определяется расположением оконечных пунктов и выбирается вдоль автомобильных дорог, либо вдоль железных дорог на расстоянии 20 метров от железной дороги. Оптический кабель может быть также подвешен на опорах ЛЭП, либо на опорах электрифицированной сети железной дороги, либо на существующих опорах воздушных линий связи.

Для обеспечения первого требования учитывают протяженность трассы, наличие и сложность пересечения рек, железных и шоссейных дорог, трубопроводов, характер местности, почв, грунтовых вод, возможность применения механизированной прокладки, необходимость защиты сооружений связи от электромагнитных влияний и коррозии, возможность и условия доставки грузов (материалов, оборудования) на трассу.

Для обеспечения второго и третьего требований учитывают жилищно-бытовые условия и возможность размещения обслуживающего персонала, а также создание соответствующих условий для исполнения служебных обязанностей.

Для соблюдения указанных требований трасса должна иметь наикратчайшее расстояние между заданными пунктами и наименьшее количество препятствий, усложняющих и удорожающих строительство. За пределами населенных пунктов трассу обычно выбирают в полосе отвода автомобильных дорог или вдоль профилированных проселочных дорог. Допускается спрямление трассы кабеля, если прокладка вдоль автомобильной иди железной дорог значительно удлиняет трассу.


Рисунок 1 - Карта проектирования транспортной сети

Исходя из карты местности можно увидеть два основных пути прохождения трассы ВОЛП, основываясь на топологиях.

Рисунок 2 - Варианты трасс а)вариант 1 - топология радиально-кольцевая, б)вариант 2 -топология кольцевая

Расчет расстояния между пунктами произвел с помощью сайта компании «АвтоТрансИнфо» (расчет приведен в приложении А)

Данные топологии будут сравниваться в главе 4. Трасса выбрана исходя из трех вышеупомянутых принципов, с минимальным количеством переходов через рек.

3 Расчет требуемых эквивалентных ресурсов транспортной сети

Произведем расчёт эквивалентных ресурсов проектируемой транспортной сети, воспользуемся данными из ТЗ, представленного в таблице 1.

Таблица 1. - Требуемое число потоков проектируемой сети.

Типы цифровых потоков

Направления

Эквивалентное число потоков 2.048Мбит/с в системах передачи SDH с учетом схемы мультиплексирования этих потоков в VC-12 (1 поток), VC-3 (21 поток через VC-12 или 16 потоков через мультиплексирование PDH в 34,368Мбит/с), VC-4 (63 потока через VC-12 или 64 потока через мультиплексирование PDH в 139,264Мбит/с). Определение эквивалента потоков на скорости 2.048Мбит/с необходимо для определения уровня иерархии


[Введите текст]

ФГОУ ВПО «Петербургский государственный университет путей сообщения»

Кафедра «Электрическая связь»

Курсовой проект на тему:

Проектирование транспортной сети SDH

Санкт-Петербург 2012г.

Синхронный мультиплексор, обобщенная структурная схема мультиплексора ввода/вывода (ADM)

На рисунке представлена обобщенная структурная схема мультиплексора ввода/вывода цифровых потоков (ADM). Контроллер осуществляет контроль и управление всеми модулями мультиплексора, а также сбор и индикацию аварийных сигналов. По каналам DCC (Data Control Channel), организованным с помощью байтов секционных заголовков D1,...D12, он поддерживает постоянный информационный обмен с другими мультиплексорами в сети, что обеспечивает функционирование наложенной на первичную сеть SDH сети управления. К контроллеру могут быть подключены либо местная система управления (по стыку RS-232), либо система управления стандарта TMN (Telecommunications Management Network), для которой используется стык Ethernet. К контроллеру также подключается блок служебной связи EOW (Engineering Order Wire), которая организуется с помощью байтов Е1, Е2, F1 секционных заголовков (в некоторых мультиплексорах для EOW могут использоваться и другие байты).

К коммутационной (кросс-коннекторной) матрице, осуществляющей все оперативные переключения цифровых потоков, подключаются оптические агрегаты (с номерами 1 и 2 в США, и West и East в Западной Европе). К матрице также подключаются трибьютерные блоки, к которым подводятся передаваемые цифровые потоки. Помимо потоков PDH иерархии, может быть осуществлен ввод/вывод и потоков SDH иерархии (в электрической или оптической форме), а также сигналов компьютерных сетей стандарта Ethernet.

Основным узлом контроллера синхронного мультиплексора является процессор с соответствующим программным обеспечением. Таким образом, мультиплексор по сути является специализированным компьютером. Программное обеспечение находящегося в производстве мультиплексора непрерывно развивается и совершенствуется. Как показывает практика, в течение года появляется примерно 3-5 обновленных версий программного обеспечения, которые обеспечивают расширение функциональных возможностей мультиплексора.

Аппаратурное резервирование

Аппаратурное защитное переключение EPS (Equipment Protection Switching) является одной из мер, направленных на повышение надежности работы сети SDH. В этом случае резервируются рабочие блоки оборудования (коммутационные матрицы, трибьютерные блоки для ввода/вывода цифровых потоков, линейные оптические агрегаты). Так как проектируется первичная сеть необходимо максимально повысить надежность. Применяю резервирование по принципу 1 + 1 (один блок рабочий и один резервный).

Сетевой защитный механизм MSP

Для повышения надежности работы проектируемой сети SDH осуществляю с помощью резервирования мультиплексорных секций MSP (Multiplexer Section Protection), соответствующий G.841. Он может быть использован на сети или подсети “точка-точка”. Для его реализации необходимо наличие резервного линейного тракта, как это показано на рис.2.1. При этом сигнал SDH одновременно передается как по основному, так и по резервному тракту. При нормальных условиях работы на приеме используется сигнал, передаваемый по основному тракту. В сети SDH производится постоянный контроль качества передачи сигналов посредством алгоритма BIP (Bit Interleaved Parity). В случае значительного ухудшения качества сигнала основного тракта на приеме производится аварийное переключение APS (Autometic Protection Switching) на резервный линейный тракт, для управления которым используются байты KI и К2 заголовка мультиплексорной секции MSOH. Очевидно, что такое переключение сопровождается перерывом связи, но согласно существующим нормам, его длительность не должна превышать 50 миллисекунд. Отметим, что при MSP защищается весь передаваемый по линейному тракту групповой сигнал.

Выбор синхронных мультиплексоров

Взаимодействие узлов проектируемой кольцевой сети SDH рассчитано в таблице 1. В ней указано количество цифровых потоков со скоростью 2 Мбит/с, которое необходимо организовать между узлами сети, параметр А соответствует суммированию соответствующих цифровых потоков по вертикали, а параметр В соответствует суммированию по горизонтали.

Из таблицы видно:

1) В колонке В суммарное число 100 характеризует количество цифровых потоков, передаваемых по кольцу SDH;

2) В колонке А+В числа 45, 42, 39, 38, 36 соответствуют числу портов 2 Мбит/с на каждом узле.

Таким образом, минимально допустимый уровень передаваемого по кольцу сигнала SDH равен STM-1. При этом для реализации данной сети целесообразно использовать аппаратуру Metropolis ADM (Compact shelf).

Технические характеристики синхронного мультиплексора Alcatel-Lucent Metropolis ADM (Compact shelf).

Синхронный мультиплексор с линейными оптическими агрегатами STM-4 или STM- 16, причем допускается реализация и без агрегатов (с одними трибьютерными блоками). Число установочных мест - 5 (одно место для резервного блока).

Типы трибьютерных блоков - 2 Мбит/с;

STM-1 (электрический);

STM-1 (оптический);

Максимальное число портов 2 Мбит/с на одном трибьютерном блоке - 63.

Максимальное число портов 2 Мбит/с на мультиплексоре - 252.

Защитные механизмы: MSP, SNCP, 2/:MS-SPRlNG (для агрегатов STM-16).

Типы линейных оптических агрегатов: L-4.1, L-4.2, L-16.1, L-16.2/3.

Типы оптических трибьютеров: S - 1.1, L-1.2, S-4.1, L-4.2.

Устанавливается только в стойке.

Соответственно, исходя из расчетов взаимодействия узлов, аппаратурного резервирования и выбранного типа сетевого защитного механизма, комплектация мультиплексоров будет выглядеть следующим образом:

Узел 1 Metropolis ADM (Compact Shelf)

Узел 2 Metropolis ADM (Compact Shelf)

Узел 3 Metropolis ADM (Compact Shelf)

Узел 4 Metropolis ADM (Compact Shelf)

Узел 5 Metropolis ADM (Compact Shelf)

Оптические агрегаты и трибьютеры

Оптические агрегаты и трибьютеры обеспечивают передачу оптических сигналов по одномодовому оптическому волокну, которое используется в качестве направляющей системы на всех сетях SDH. В зависимости от расстояния и параметров волокна необходимо использовать различные типы этих устройств, поэтому существует система обозначений и нормирования параметров оптических агрегатов и трибьютеров согласно Рекомендации МСЭ-Т G.957. В соответствии с ней тип агрегата или трибьютера обозначается как:

Таким образом, например, обозначение L-4.2 соответствует L агрегату или трибьютеру, уровня STM-4 и с рабочей длиной волны в диапазоне 1,55 мкм.

Как упоминалось выше, с целью более надежной работы системы выделения тактовой частоты, передаваемый по линейному тракту сигнал подвергается скремблированию. При этом используется формат сигнала с невозвращением к нулю NRZ (Non Return to Zero).

В выпускаемых в последнее время синхронных мультиплексорах находят применение сменные модули SFP (Small Form-factor Pluggable), которые позволяют оператору самостоятельно менять тип оптического агрегата или трибьютера (к примеру тип S на тип L).

По желанию оператора, для некоторых типов мультиплексоров возможна поставка так называемых “окрашенных” оптических агрегатов, длина волны оптического излучения которых соответствует плану длин волн системы передачи с WDM.

В числе параметров оптических агрегатов и трибьютеров следует выделить диапазон перекрываемого оптического затухания Amin - Атах) и преодолеваемую им максимальную хроматическую дисперсию Dmax. Например, для оптического трибьютера L-4.2, производства Alcatel-Lucent и соответствующего Рекомендации G.957,диапазон перекрываемого оптического затухания равен 10-24 дБ, а максимальная хроматическая дисперсия Dmax равна 2000 пс/нм.

Параметры оптических агрегатов и трибьютеров

Тип оптического агрегата или трибыотера

Энергетический потенциал Amin - Атах, дБ

Максимальная хроматическая дисперсия Dmax. пс/пм

Оптические агрегаты с большой выходной оптической мощностью оборудуются системой автоматического выключения лазера ALS (Automatic Laser Shutdown).Эта система обеспечивает выключение лазеров обоих направлений в случае повреждения оптического волокна и их автоматическое включение при устранении повреждения (эта профилактическая мера направлена на предупреждение возможного повреждения глаз обслуживающего персонала оптическим излучением, выходящим из торца волокна).

Многие оптические агрегаты обеспечивают контроль оптической мощности на выходе лазера и на входе фотодиода и контроль постоянного тока смещения лазера, что позволяет, как с приемлемой точностью оценить величину полного оптического затухания в линейном тракте, так и осуществлять текущий контроль за работой лазера.

Определение типа оптических агрегатов и оптических трибьютеров

Дальность связи по одномодовому оптическому волокну ограничивается двумя факторами - затуханием оптических сигналов и их хроматическими дисперсионными искажениями. В процессе проектирования сперва определяется максимально допустимая дальность связи с учетом только наличия затухания сигналов - Lзат. Затем определяется максимальная дальность связи с учетом только хроматических дисперсионных сигналов - Lдис. Окончательное значение максимальной дальности связи - Lmax с учетом двух указанных выше ограничивающих факторов рассчитывается как меньшее из значений Lзат и Lдис.

Величина Lзат определяется энергетическим потенциалом оптического агрегата или трибьютера, т.е. допустимым диапазоном преодолеваемого агрегатом полного оптического затухания от нижней Amin до верхней Атах границы энергетического потенциала, в котором обеспечивается нормальная работа синхронного мультиплексора. При этом должно выполняться следующее соотношение

Данные об энергетическом потенциале и максимальной хроматической дисперсии являются паспортными данными синхронного мультиплексора и входят в состав соответствующей технической документации. В таблице выше эти параметры применительно к различным типам оптических агрегатов и трибьютеров приведены для некоторых образцов аппаратуры фирмы Alcatel - Lucent, что дает возможность решить соответствующую задачу в ходе проектирования сети SDH.

Так как, минимально допустимый уровень передаваемого по кольцу сигнала SDH равен STM-1, то необходимо проверить оптические агрегаты типа S-1,1; L-1,2.

Проверю оптический агрегат S - 1,1.

Amax > 0,37 Lзат + (0,1*4) + (1*2) + 3

Amax > 0,37 Lзат + 5,4

12 > 0,37 Lзат + 5,4

6,6 > 0,37 Lзат

Lзат < 17,83 - Не удовлетворяет требованиям.

Проверю оптический агрегат L - 1,2.

Amax > 0,21 Lзат + (0,1*17) + (1*2) + 3

Amax > 0,21 Lзат + 6,7

28 > 0,21 Lзат + 6,7

21,3 > 0,21 Lзат

Lзат < 101,43 - Удовлетворяет требованиям.

Основываясь на расчетах, для построения данной сети, целесообразнее использовать оптические агрегаты L - 1,2.

Система тактовой сетевой синхронизации

синхронный мультиплексор трибьютер сеть

Развитие цифровых сетей связи вызывает необходимость создания и совершенствования системы тактовой сетевой синхронизации (ТСС). Потребность в ТСС возникает, когда к цифровым системам передачи подключаются цифровые коммутационные станции, т.е. создается единая цифровая сеть, обеспечивающая передачу и коммутацию сигналов в цифровой форме. Дело в том, что если тактовые частоты задающих генераторов совместно работающих коммутационных станций хотя бы незначительно отличаются, то возникают проскальзывания, т.е. исключение или повторение в цифровом сигнале одного или нескольких бит. Они происходят вследствие различия в скоростях записи и считывания буферных устройств, находящихся на коммутационных станциях. С помощью ТСС обеспечивается установка и поддержание тактовой частоты сигналов, что позволяет не выходить за установленные МСЭ-Т пределы по частоте проскальзываний на сети. При этом транспортная сеть SDH используется не только для передачи информационных цифровых потоков, но также и для передачи сигналов синхронизации цифровых коммутационных станций, базовых станций стандарта GSM и других внешних, для сети SDH, систем.

Режимы работы сети ТСС

Существующие нормативные документы определяют четыре режима работы сети синхронизации:

1) синхронный;

2) севдосинхронный;

3) плезиохронный;

4) асинхронный.

Синхронный режим является нормальным режимом работы цифровой сети. В идеально работающей цифровой сети при этом режиме возможность возникновения проскальзываний исключена.

Псевдосинхронный режим возникает при условии независимой работы на сети двух (или нескольких) эталонных генераторов, со стабильностью частоты не менее 1 х 10-11, что соответствует Рекомендации G.811. При этом ухудшение качества для всех видов связи будет практически неощутимым (одно проскальзывание за 70 суток). В частности, такой режим возникает при взаимодействии двух регионов синхронизации.

Плезиохронный режим работы возникает, когда генератор какого-либо ведомого узла теряет возможность внешней принудительной синхронизации. В этом случае генератор переходит в режим удержания (Holdover mode), при котором продолжает генерировать частоту сети с принудительной синхронизацией. Длительность работы в режиме удержания для выполнения норм по частоте проскальзываний должна быть жестко ограничена во времени (не более суток в течение года). Частоты ведомых задающих генераторов, используемых в этом режиме, должны удовлетворять Рекомендации G.812.

Асинхронный режим характеризуется значительно большим расхождением частот генераторов и на сетях связи России неприменим.

Данная проектируемая сеть работает в синхронном режиме. Место подключения основного источника синхронизации узел № 3.

Типы генераторных устройств, применяемые на сетях SDH. Иерархическое построение сети синхронизации

На сетях SDH применяются следующие типы генераторных устройств:

1) Первичные эталонные генераторы PRC (Primary Reference Clock);

2) Ведомые задающие генераторы SSU (Synchronization Supply Unit);

3) Генераторы сетевых элементов SEC (SDH Equipment Clock).

Первичный эталонный генератор PRC - высокостабильный генератор, долговременное относительное отклонение частоты которого от номинального значения поддерживается не превышающим 1x10-11, что соответствует Рекомендации G.811. Этот генератор обладает на сети синхронизации наивысшим качеством и занимает высшую ступень в иерархии генераторных устройств. Реализуется на основе цезиевого или водородного квантового генератора. Другой способ реализации PRC - это использование приемника сигналов системы глобального определения координат GPS (Global Positioning System).При этом может быть использована либо система NAVSTAR, находящаяся в ведении министерства обороны США, либо отечественная система ГЛОНАСС. Отметим, что PRC, реализованные на основе приемников GPS, могут использоваться лишь как резервные.

Ведомый задающий генератор SSU - это генератор, фаза которого подстраивается по входному сигналу, полученному от генератора более высокого или того же качества. Существуют SSU транзитного узла SSU-Т, и местного узла SSU-L, соответствующие Рекомендациям G.812T и G.8I2L, занимающие вторую и третью ступень в иерархии. Их стабильность частоты в ведомом режиме 5x10-10 (SSU-Т) и 1x10-8 (SSU-L), а в режиме свободных колебаний 1x10-9 и 2x10-8 соответственно.

Генератор сетевого элемента SEC отвечает требованиям Рекомендации G.813 и обладает стабильностью 5x10-8 в ведомом режиме и 4,6x10-6 в режиме свободных колебаний (в настоящее время реализуются синхронные мультиплексоры с внутренним генератором и более высокого качества).

От PRC сигналы синхронизации необходимо передать ко всем сетевым элементам, число которых может быть весьма большим. Отметим, что при передаче синхросигналов от одного сетевого элемента NE (Network Element) к другому, их качество непрерывно ухудшается вследствие накопления фазовых дрожаний значащих моментов цифрового сигнала от их идеальных положений во времени (“джиттер” и “вандер”). Для улучшения качества синхронизации в цепочке каскадно включенных сетевых элементов используются SSU, которые обладают очень узкой полосой пропускания и отфильтровывают шум джиттера и вандера.

Чтобы ограничить накопление фазовых дрожаний в длинных цепочках сетевых элементов NE, необходимо ограничивать длину и состав цепочки до следующих пределов:

1) цепочка генераторов в сети между PRC и наиболее удаленным NE не должна содержать более 10 SSU и 60 SEC;

2) максимальное число SEC между двумя SSU не должно превышать 20.

В соответствии с вышеизложенным, общая схема синхронизации сети SDH имеет иерархическую древовидную структуру, предусматривающую как резервирование как PRC, так и путей прохождения сигналов синхронизации. Используется только принудительная синхронизация генераторов, иначе именуемая “ведущий ведомый”(master - slave). При этом в сети синхронизации должна соблюдаться определенная иерархия в распространении сигналов синхронизации: от PRC синхронизируется в основном магистральная первичная сеть, от магистральной сети синхронизируются внутризоновые, а от внутризоновых или магистральной - местные сети.

SSM алгоритм. Петли синхронизации. Приоритеты источников синхронизации

Как отмечалось выше, на сети синхронизации необходимо предусмотреть резервные источники и пути прохождения синхросигналов, причем при этом желательна автоматизация процесса переключения. На сетях SDII это достигается посредством использования алгоритма сообщений о статусе синхронизации - SSM алгоритма, который основан на использовании байта S1 секционного заголовка мультиплексорной секции MSOH.

К мультиплексору, находящемуся в начале цепочки синхронизации подключен источник синхросигнала с качеством PRC (узел 3). Тогда, в байте S1 исходящего сигнала STM-N, в битах с 5 по 8, будет записана комбинация 0010. Если же качество источника синхросигнала равно SSU-T (узел 5), то в байте S1 записывается группа 0100. Таким образом, соседние мультиплексоры могут автоматически оценить приходящие к ним сигналы SDH с точки зрения целесообразности их использования для целей синхронизации и выбрать сигнал с наивысшим уровнем качества.

На рис.2 показана цепочка синхронизации. Значение DNU, записанное в байте S1 посредством комбинации 1111, означает запрет на использование приходящего сигнала для целей синхронизации. Необходимость введения сообщения DNU можно пояснить на следующем примере.

Предположим, что в цепочке на рис. 2 вместо сообщения DNU от второго мультиплексора к третьему в байте S1 передается сообщение PRC. При этом, в случае пропадания внешнего синхросигнала с реальным качеством PRC мультиплексор начнет синхронизироваться по поступающему к нему сигналу SDH. Возникнет так называемая петля синхронизации, когда синхросигнал сетевого элемента извлекается из выходного сигнала синхронизации того же самого сетевого элемента. Вследствие этого синхросигнал становится очень нестабильным, что крайне отрицательно воздействует на характеристики транспортной сети SDH, вплоть до полных перерывов связи. На сети SDH ни при каких возможных режимах работы (нормальных и аварийных) не должно возникать петель синхронизации. Одной из мер, препятствующих возникновению петель, и является передача сообщения DNU в байте S1.

На сетевой элемент может одновременно поступать несколько синхросигналов с одинаковым уровнем качества. В этом случае, для определения источника синхронизации, который выбирает сетевой элемент, каждому источнику синхронизации назначается приоритет.

Отметим, что качество является более важным параметром, чем приоритет. Так при выборе источника синхронизации сетевой элемент сначала выбирает источник с наивысшим уровнем качества. При наличии нескольких источников с одинаковым качеством, выбор делается в пользу источника с наивысшим приоритетом.

Восстановление синхронизации при авариях на сети

Рассмотрим сеть SDH при различных режимах работы синхронизации. Схема 1 иллюстрирует работу этой сети в нормальном режиме. Имеется два источника синхронизации - основной (с качеством PRC) и резервный (с качеством SSU - Т).

Рассмотрим аварийный режим работы сети, соответствующий обрыву кабеля на участке 3-4. При аварии возникает переходный процесс по завершении которого, сеть синхронизации примет вид, показанный на Схеме 2. Очевидно, что в этом случае происходит переключение сети на резервный источник синхронизации.

Существуют определенные требования к построению сети синхронизации, причем эта задача относится к классу поиска многокритериального оптимального решения. Но особо следует подчеркнуть, что сеть синхронизации должна быть спроектирована таким образом, чтобы исключить возможность возникновения петель синхронизации, как в нормальном режиме, так и при всех возможных авариях на сети.

Список литературы

1. Методические указания по проектированию транспортных сетей SDH.

2. Конспект лекций.

Подобные документы

    Тактовая сетевая синхронизация: общие положения, структура сети синхронизации и особенности проектирование схем. Ключевые условия качественной синхронизации цифровых систем. Общие принципы управления в оптической мультисервисной транспортной сети.

    реферат , добавлен 03.03.2014

    Сравнительная характеристика современных телекоммуникационных технологий SDH и PDH. Состав сети SD и типовая структура тракта; функции и структура заголовков. Типы и параметры синхронизации в сетях связи. Разработка тактовой сетевой синхронизации.

    дипломная работа , добавлен 17.10.2012

    Разработка транспортной оптической сети: выбор трассы прокладки и топологии сети, описание конструкции оптического кабеля, расчет количества мультиплексоров и длины участка регенерации. Представление схем организации связи, синхронизации и управления.

    курсовая работа , добавлен 23.11.2011

    Элементарная схема транспортной сети, ее архитектура. Мультиплексор как основной функциональный модуль сети SDH, многообразие его функций. Аппаратная реализация функциональных блоков оборудования сетей SDH. Электрический расчет линейного тракта.

    дипломная работа , добавлен 20.04.2011

    Общие принципы резервирования. Методы диагностики обрыва во входных цепях аналоговых модулей. Принцип работы системы, резервированной методом замещения. Резервирование датчиков и модулей ввода дискретных сигналов, аналоговых модулей ввода и вывода.

    статья , добавлен 12.12.2010

    Необходимость синхронизации и фазирования, методы. Оптимальный измеритель синхропараметра. Дискриминатор, который вычисляет разность между ожидаемым решением и новым. Структурная схема измерителя. Классификация устройств синхронизации по элементам.

    реферат , добавлен 01.11.2011

    Реализация булевых функций на мультиплексорах. Применение постоянных запоминающих устройств (ПЗУ). Структурная схема программируемых логических матриц (ПЛМ). Функциональная схема устройства на микросхемах малой и средней степени интеграции, ПЗУ и ПЛМ.

    курсовая работа , добавлен 20.12.2013

    Описание дешифратора и структурная схема устройства. Расчет потребляемой мощности и времени задержки. Описание мультиплексора и структурная схема коммутатора параллельных кодов. Устройство параллельного ввода слов в регистры. Ждущий мультивибратор.

    курсовая работа , добавлен 27.04.2015

    Структура фрагмента процессора. Функциональный состав процессорного блока. Входные/выходные сигналы распределителя. Микропрограмма управления для команды. Устройство управления и синхронизации, принцип его работы. Порты ввода, вывода микроконтроллера.

    курсовая работа , добавлен 17.04.2015

    Выбор среды передачи данных. Структурная схема магистральной системы DWDM. Системы удаленного мониторинга оптических волокон. Мультиплексор Metropolis ADM Universal. Расчет количества регенераторов. Монтаж оптического кабеля с учетом выбранной трассы.

Затраты времени пассажиров на трудовое передвижение в один конец по городу являются главным критерием качества транспортной системы. Согласно нормам в России эти затраты не должны превышать Т = 40мин в крупных городах (выше 500 тыс. жителей) и Т = 30 млн. в средних и мелких городах. Величина транспортной доступности должна быть не менее 2,5 для крупных городов и не менее 3,3 средних и мелких городов. Этот критерий является определяющим при проектировании транспортной сети и маршрутных схем в городах.

Основой проектирования являются план города с улично-дорожной сетью, указанными на плане пассажиро- и грузообразующимим пунктами, а также матрица пассажиро-грузопотоков между районами города. Основные пассажиро- и грузообразующие пункты - это жилые кварталы города, вокзалы, промышленные предприятия, торговые центры.

Начальный этап - построение планограммы средней удаленности проживания населения города относительно всех центров тяготения.

На планограмме расселения относительно всех центров тяготения города строятся километрические зоны. Километрические зоны - это квадраты, построенные с интервалами 1,2… п. км. относительно всех центров тяготения.

Определяется средняя удаленность проживания населения города относительно всех центров тяготения. Далее определяется средневзвешенные затраты времени населения города на передвижение относительно центров тяготения, исходя из скорости пешехода 4,5 км/ч. Далее определяется величина доступности центров тяготения в городе.

По улично-дорожной сети прокладываются транспортные линии, связывающие центры тяготения, и оцениваются величины транспортной доступности с учетом передвижения пассажиров по транспортным связям.

Для этого на плане города относительно всех центров тяготения строятся изохронны. Изохронны строятся с интервалом 10,20,30 и т.д. мин. Все населения города, проживающие внутри изохронны 10 мин достигает центр тяготения 10 мин и менее.

По результатам построения с учетом действующей транспортной системы определяется транспортная доступность для рассматриваемого города.

Если полученное расчетом значение транспортной доступности меньше требуемого по норме, то необходимо улучшать транспортную систему за счет, например, увеличения скорости движения, уменьшения интервала движения транспорта. Улучшения проводятся до тех пор, пока не будут достигнуты требования стандарта.

Дальнейшая работа включает совершенствование рассчитанной транспортной сети за счет выбора вида транспорта исходя из приведенных затрат, экологических требований, выбора подвижного состава.

Наиболее наглядным методом выбора оптимальных маршрутов движения транспорта является метод потенциала. Потенциалы указаны около каждой конечной точки. В исходную маршрутную схему могут входить все сквозные и участковые маршруты.

Дальнейшее совершенствование маршрутной схемы включает: проверку сквозных маршрутов на условие выгодности беспересадочного сообщения; соответствие требуемым интервалам движения: выбор улучшенной маршрутной схемы; расчет целесообразности назначения дополнительных сквозных маршрутов; проверка использования вместимости подвижного состава: окончательный выбор маршрутной схемы.